Connecting the San Andreas Fault through Southern California

A web of faults links the San Andreas Fault over a discontinuous 80-kilometer [50 mile] region in southern California. Carena et al. analyzed a gap in the famous fault line that runs from the Mojave Desert to the Coachella Valley and suggest that a network of seismically active faults likely connects the two strands of the 1,200-kilometer [750-mile] San Andreas Fault.

The researchers examined the three-dimensional geometry of the fault system in the complex region, reaching nearly 20 kilometers [10 miles] below the Earth’s surface. They report that the San Andreas devolves into a series of faults with varying configurations such that it would require an unlikely sequence of fault ruptures to trigger a massive earthquake involving both strands of the fault.

The authors also modeled several possible fault rupture scenarios for earthquakes in the Los Angeles area to determine the likelihood of a complex rupture.

Title: Lack of continuity of the San Andreas Fault in southern California: Three-dimensional fault models and earthquake scenarios

Media Contact

Sara Carena Journal of Geophysical Research

More Information:

http://www.agu.org

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors