Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings On Climate Show Gradual Shift To Modern But Increased Sensitivity To Perturbations

21.05.2004

Earth’s climate system is more sensitive to perturbations now than it was in the distant past, according to a study published this week in the journal Nature. The findings suggest a previously unrecognized role for tropical and subtropical regions in controlling the sensitivity of the climate to change.

Christina Ravelo, an ocean scientist at the University of California, Santa Cruz (UCSC) , and her coauthors at UCSC and Boise State University, Idaho, focused on the Pliocene epoch, from about 5 million to 1.8 million years ago, when the climate was significantly warmer, sea levels were higher, and polar ice sheets were smaller than they are today. During the late Pliocene, the climate shifted to the much cooler regime of the Pleistocene, characterized by episodes of extensive glaciation in the Northern Hemisphere. Today’s climate is a relatively warm period within this generally cool climate regime.

The findings have implications for understanding modern climate change. The Pliocene is the most recent period in Earth’s history with warmer temperatures than today and comparable concentrations of greenhouse gases, so it offers a tempting analogy for future climate change. But the Pliocene was a very different time in terms of circulation patterns and sensitivity to climate change, Ravelo said.

Traditional explanations for the transition from the warm Pliocene to the cool Pleistocene have focused on single events- such as the uplifting of mountain ranges or separation of ocean basins--that may have altered global circulation patterns and tipped the climate system beyond some threshold, resulting in a new climate regime. Ravelo’s findings, however, point toward a gradual process in which shifts in major components of the climate system occurred at different times in different regions.

"We found evidence of regional responses that can’t be explained by a domino effect. The transition took about 2 million years, and there is no way one event could have led to that," Ravelo said.

Added Amos Winter, program director in the National Science Foundation (NSF)’s marine geology and geophysics program, which funded the research, "There is a big debate regarding the mechanisms and rates of climate change from the warm Pliocene to the cool Pleistocene. Using deep-sea sediment cores to reconstruct climate over the last 5 million years, Ravelo and colleagues demonstrate that the transition can’t be explained by a single event, as previously had been thought."

The researchers analyzed sediment cores from the ocean floor for evidence of climate conditions during the Pliocene. Fossils of microscopic plankton preserved in the sediments hold records of ocean temperatures and seasonal variability. Even the extent of glaciation on land can be determined from oxygen isotope ratios in the calcite shells of marine plankton.

When they compared climate trends at different latitudes, the researchers found that tropical conditions remained stable while a major shift took place at higher latitudes. The onset of significant glaciation in the Northern Hemisphere took place about 2.75 million years ago, accompanied by cooling in subtropical regions. Significant changes in the tropics were not seen until a million years later, when conditions in the tropics and subtropics switched to the patterns of ocean temperatures and atmospheric circulation that persist today.

With this transition to the modern mode of circulation in the tropics and subtropics, the global climate system seems to have become much more sensitive to small perturbations. On short timescales, for example, dramatic swings in climate known as El Niño and La Niña are triggered by periodic changes in the equatorial waters of the Pacific.

On longer timescales, the comings and goings of the glacial ice sheets over hundreds of thousands of years during the Pleistocene correlate with cyclical changes in solar heating of the planet related to cycles in Earth’s orbit around the Sun. Climatologists refer to such effects as "solar forcing." But during the Pliocene, the same cyclic changes in solar heating took place without corresponding swings in the global climate.

"Small changes in the solar budget gave large climate responses during the Pleistocene, which we now think is related to conditions in tropical regions that create strong feedbacks between the ocean and the atmosphere," Ravelo said. "During the Pliocene, the system didn’t respond very strongly to small perturbations, because there weren’t these feedback mechanisms embedded in the atmospheric and oceanic circulation patterns."

The ultimate cause of the transition from Pliocene to Pleistocene climate regimes is still unknown. A likely candidate, however, is a gradual decline in the concentration of greenhouse gases in the atmosphere, Ravelo said.

"The forcing must have been gradual, and different places went through this major transition in the climate at different times because of distinct regional responses to the global forcing.

"If we use that time period as an analogy for the future, we need to understand that we are looking at a climate system that is really quite different than today," she said. "And whatever happens in the future, if there are significant changes in the lower latitudes, that could have major effects on the global climate system."

Ravelo’s coauthors include Dyke Andreason, formerly a graduate student at UCSC and now at Rutgers University; Mitchell Lyle and Annette Olivarez Lyle of Boise State University; and UCSC graduate student Michael Wara.

NSF Program Contact: Amos Winter, awinter@nsf.gov, 703/292-8580

Tim Stephens | NSF
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>