Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings On Climate Show Gradual Shift To Modern But Increased Sensitivity To Perturbations

21.05.2004

Earth’s climate system is more sensitive to perturbations now than it was in the distant past, according to a study published this week in the journal Nature. The findings suggest a previously unrecognized role for tropical and subtropical regions in controlling the sensitivity of the climate to change.

Christina Ravelo, an ocean scientist at the University of California, Santa Cruz (UCSC) , and her coauthors at UCSC and Boise State University, Idaho, focused on the Pliocene epoch, from about 5 million to 1.8 million years ago, when the climate was significantly warmer, sea levels were higher, and polar ice sheets were smaller than they are today. During the late Pliocene, the climate shifted to the much cooler regime of the Pleistocene, characterized by episodes of extensive glaciation in the Northern Hemisphere. Today’s climate is a relatively warm period within this generally cool climate regime.

The findings have implications for understanding modern climate change. The Pliocene is the most recent period in Earth’s history with warmer temperatures than today and comparable concentrations of greenhouse gases, so it offers a tempting analogy for future climate change. But the Pliocene was a very different time in terms of circulation patterns and sensitivity to climate change, Ravelo said.

Traditional explanations for the transition from the warm Pliocene to the cool Pleistocene have focused on single events- such as the uplifting of mountain ranges or separation of ocean basins--that may have altered global circulation patterns and tipped the climate system beyond some threshold, resulting in a new climate regime. Ravelo’s findings, however, point toward a gradual process in which shifts in major components of the climate system occurred at different times in different regions.

"We found evidence of regional responses that can’t be explained by a domino effect. The transition took about 2 million years, and there is no way one event could have led to that," Ravelo said.

Added Amos Winter, program director in the National Science Foundation (NSF)’s marine geology and geophysics program, which funded the research, "There is a big debate regarding the mechanisms and rates of climate change from the warm Pliocene to the cool Pleistocene. Using deep-sea sediment cores to reconstruct climate over the last 5 million years, Ravelo and colleagues demonstrate that the transition can’t be explained by a single event, as previously had been thought."

The researchers analyzed sediment cores from the ocean floor for evidence of climate conditions during the Pliocene. Fossils of microscopic plankton preserved in the sediments hold records of ocean temperatures and seasonal variability. Even the extent of glaciation on land can be determined from oxygen isotope ratios in the calcite shells of marine plankton.

When they compared climate trends at different latitudes, the researchers found that tropical conditions remained stable while a major shift took place at higher latitudes. The onset of significant glaciation in the Northern Hemisphere took place about 2.75 million years ago, accompanied by cooling in subtropical regions. Significant changes in the tropics were not seen until a million years later, when conditions in the tropics and subtropics switched to the patterns of ocean temperatures and atmospheric circulation that persist today.

With this transition to the modern mode of circulation in the tropics and subtropics, the global climate system seems to have become much more sensitive to small perturbations. On short timescales, for example, dramatic swings in climate known as El Niño and La Niña are triggered by periodic changes in the equatorial waters of the Pacific.

On longer timescales, the comings and goings of the glacial ice sheets over hundreds of thousands of years during the Pleistocene correlate with cyclical changes in solar heating of the planet related to cycles in Earth’s orbit around the Sun. Climatologists refer to such effects as "solar forcing." But during the Pliocene, the same cyclic changes in solar heating took place without corresponding swings in the global climate.

"Small changes in the solar budget gave large climate responses during the Pleistocene, which we now think is related to conditions in tropical regions that create strong feedbacks between the ocean and the atmosphere," Ravelo said. "During the Pliocene, the system didn’t respond very strongly to small perturbations, because there weren’t these feedback mechanisms embedded in the atmospheric and oceanic circulation patterns."

The ultimate cause of the transition from Pliocene to Pleistocene climate regimes is still unknown. A likely candidate, however, is a gradual decline in the concentration of greenhouse gases in the atmosphere, Ravelo said.

"The forcing must have been gradual, and different places went through this major transition in the climate at different times because of distinct regional responses to the global forcing.

"If we use that time period as an analogy for the future, we need to understand that we are looking at a climate system that is really quite different than today," she said. "And whatever happens in the future, if there are significant changes in the lower latitudes, that could have major effects on the global climate system."

Ravelo’s coauthors include Dyke Andreason, formerly a graduate student at UCSC and now at Rutgers University; Mitchell Lyle and Annette Olivarez Lyle of Boise State University; and UCSC graduate student Michael Wara.

NSF Program Contact: Amos Winter, awinter@nsf.gov, 703/292-8580

Tim Stephens | NSF
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>