Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Aircraft, Ground Instruments to Track Carbon Dioxide Uptake along Colorado’s Drought-Plagued Front Range

27.04.2004


The National Center for Atmospheric Research will fly a C-130 research aircraft over Colorado’s Front Range this May and July to measure how much carbon dioxide mountain forests remove from the air as spring turns into summer. NCAR scientists and their university colleagues are developing new methods for assessing carbon uptake over complex terrain on regional scales. Accurate assessments could help show to what extent carbon dioxide storage in Western mountain forests-- a potentially important "sink" for the greenhouse gas--may be slowing down as the ongoing drought affects tree growth.



International pressure is mounting to limit carbon emissions because of their role in global climate change. Better understanding of natural processes involved in forest-air carbon exchange may lead to more accurate monitoring methods and new ways to enhance carbon uptake. High carbon-emitting nations and industries are interested in devising strategies for meeting quotas and trading carbon credits.

ACME (short for the Airborne Carbon in the Mountains Experiment) gives scientists an opportunity to combine airborne data with ground-based measurements for the first time to paint a more accurate picture of carbon exchanges in rolling hills and mountain ranges. Results from the field program will also be used in testing computer models of forest ecosystem function. The models will help scientists understand the response of forests to drought, fire, insects, and climate change.


Local researchers are especially interested in a side trip to assess forest-air exchange over the 150,000-acre Hayman fire burn area.

"Wildfires play a big role in controlling vegetation and carbon exchange in the Rockies," says NCAR scientist Dave Schimel, "but most burn areas are too small to assess from an aircraft. For the first time we have a chance to get airborne measurements of carbon directly over a large, disturbed area."

Forest losses during the 2002 wildfire season in Colorado reversed years of carbon uptake. The amount of carbon dioxide released from trees during the fires equaled an entire year’s emissions from statewide transportation activities.

As the research plane samples air aloft, a dense network of instruments will gather data over a half square mile on Niwot Ridge near Nederland. Perched atop three steel towers provided by NCAR, each between 100 and 200 feet tall, carbon dioxide sensors and sonic anemometers will measure changes in carbon levels and winds high above the tree tops.

"Today we usually look for carbon in all the wrong places,” says Schimel, "focusing on where it’s easy to measure rather than where fluxes are largest.” Most current studies are in flat areas, but most western forests are in the mountains, he explains. Schimel and colleagues have estimated that 25-50% of U.S. carbon uptake occurs in mountainous terrain.

In the northern midlatitudes, significant carbon uptake occurs in forests, which are typically left to grow undisturbed in mountainous regions. Ground-based sensors work well in flat land: there are 200 such sites around the world. But in mountain ranges special conditions, such as turbulent airflow, snow pack, vegetation patterns, and contrasts
in sunshine and shade, complicate data gathering.

The National Science Foundation, NCAR’s primary sponsor and owner of the C-130 aircraft, is funding the project. The universities of Colorado, Florida, and Utah, Colorado State University, and Scripps Institution of Oceanography are participating, along with NCAR.

C-130 Flight Schedule and Paths

Heading out at sunrise from Jefferson County Airport, the C-130 will travel along a 30-mile arm from Winter Park east to Longmont and around a 71-mile oval loop from Idaho Springs north to Allenspark (see map below), carrying a belly full of specialized instruments. The aircraft will retrace the pattern again between 2:00 and 4:00 p.m. the same day, flying as low as 1,000 feet above the ground in some places and rising to 16,500 feet in others. The pilots expect to fly four or five days in May and the same number in July. They will also head south to the Hayman burn area southwest of Denver once in May and once in July.

Anatta | NCAR
Further information:
http://www.ucar.edu/communications/newsreleases/2004/acme.html

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>