Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Aircraft, Ground Instruments to Track Carbon Dioxide Uptake along Colorado’s Drought-Plagued Front Range

27.04.2004


The National Center for Atmospheric Research will fly a C-130 research aircraft over Colorado’s Front Range this May and July to measure how much carbon dioxide mountain forests remove from the air as spring turns into summer. NCAR scientists and their university colleagues are developing new methods for assessing carbon uptake over complex terrain on regional scales. Accurate assessments could help show to what extent carbon dioxide storage in Western mountain forests-- a potentially important "sink" for the greenhouse gas--may be slowing down as the ongoing drought affects tree growth.



International pressure is mounting to limit carbon emissions because of their role in global climate change. Better understanding of natural processes involved in forest-air carbon exchange may lead to more accurate monitoring methods and new ways to enhance carbon uptake. High carbon-emitting nations and industries are interested in devising strategies for meeting quotas and trading carbon credits.

ACME (short for the Airborne Carbon in the Mountains Experiment) gives scientists an opportunity to combine airborne data with ground-based measurements for the first time to paint a more accurate picture of carbon exchanges in rolling hills and mountain ranges. Results from the field program will also be used in testing computer models of forest ecosystem function. The models will help scientists understand the response of forests to drought, fire, insects, and climate change.


Local researchers are especially interested in a side trip to assess forest-air exchange over the 150,000-acre Hayman fire burn area.

"Wildfires play a big role in controlling vegetation and carbon exchange in the Rockies," says NCAR scientist Dave Schimel, "but most burn areas are too small to assess from an aircraft. For the first time we have a chance to get airborne measurements of carbon directly over a large, disturbed area."

Forest losses during the 2002 wildfire season in Colorado reversed years of carbon uptake. The amount of carbon dioxide released from trees during the fires equaled an entire year’s emissions from statewide transportation activities.

As the research plane samples air aloft, a dense network of instruments will gather data over a half square mile on Niwot Ridge near Nederland. Perched atop three steel towers provided by NCAR, each between 100 and 200 feet tall, carbon dioxide sensors and sonic anemometers will measure changes in carbon levels and winds high above the tree tops.

"Today we usually look for carbon in all the wrong places,” says Schimel, "focusing on where it’s easy to measure rather than where fluxes are largest.” Most current studies are in flat areas, but most western forests are in the mountains, he explains. Schimel and colleagues have estimated that 25-50% of U.S. carbon uptake occurs in mountainous terrain.

In the northern midlatitudes, significant carbon uptake occurs in forests, which are typically left to grow undisturbed in mountainous regions. Ground-based sensors work well in flat land: there are 200 such sites around the world. But in mountain ranges special conditions, such as turbulent airflow, snow pack, vegetation patterns, and contrasts
in sunshine and shade, complicate data gathering.

The National Science Foundation, NCAR’s primary sponsor and owner of the C-130 aircraft, is funding the project. The universities of Colorado, Florida, and Utah, Colorado State University, and Scripps Institution of Oceanography are participating, along with NCAR.

C-130 Flight Schedule and Paths

Heading out at sunrise from Jefferson County Airport, the C-130 will travel along a 30-mile arm from Winter Park east to Longmont and around a 71-mile oval loop from Idaho Springs north to Allenspark (see map below), carrying a belly full of specialized instruments. The aircraft will retrace the pattern again between 2:00 and 4:00 p.m. the same day, flying as low as 1,000 feet above the ground in some places and rising to 16,500 feet in others. The pilots expect to fly four or five days in May and the same number in July. They will also head south to the Hayman burn area southwest of Denver once in May and once in July.

Anatta | NCAR
Further information:
http://www.ucar.edu/communications/newsreleases/2004/acme.html

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>