Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather forecasts misleading due to atmospheric fluctuations?

22.03.2004


Scientists at Oxford University have discovered that small-scale fluctuations, which are wide-spread in the atmosphere, may have a greater impact on weather systems than previously thought. The results, published in Nonlinear Processes in Geophysics, may have important implications for accurate weather forecasting.



The fluctuations, known as inertia-gravity waves because they are sustained by a combination of inertial and gravitational forces, are prominent in the bottom 15 km of the atmosphere.

They can often be seen from the surface of the Earth as ’stripy’ features in clouds. Their horizontal wavelengths can be as short as 5 km – too small to be picked up by current weather prediction models, which divide the surface of the Earth into grid-boxes measuring around 50 km by 50 km.


Meteorologists have therefore always had to assume that inertia-gravity waves do not significantly interact with weather systems, such as warm and cold fronts, but this assumption had never been rigorously tested.

Motivated by the results of laboratory experiments, which seemed to challenge the meteorologists’ assumption, the Oxford scientists developed a computer model of a simple fluid system resembling the atmosphere. They represented the inertia-gravity waves as random noise in the model, since the fluctuations can be highly irregular, chaotic and transient. They found that the system could behave differently when the inertia-gravity wave representation was activated – in other words, the meteorologists’ assumptions were not always justified.

In particular, the state of the fluid could undergo spontaneous transitions to quite different states, with a dramatic shift in the patterns of low and high pressure. Extrapolation of these results to the real atmosphere suggests that inertia-gravity waves could be a cause of significant errors in weather forecasts. The surprise implication of the research is that adding random noise to the forecast might actually help improve things.

Dr Paul Williams, one of the scientists involved in the study, said: ’It seems that we have observed a phenomenon which might have the potential to affect the accuracy of weather forecasts. More research is needed to find out exactly how bad the forecast error might be, but the preliminary results are very exciting. It sounds bizarre to suggest that adding random noise to a forecast might help to improve it, but science is always full of surprises!’

Barbara Hott | alfa
Further information:
http://www.copernicus.org/EGU/npg/11/contents1.htm

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>