Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutrient-poor oceans generate their food “hot spots”

14.01.2004


The oceans have their desert zones, in other words areas poor in nutrients and unfavourable for phytoplankton to develop. Half of the southern Pacific thus consists of great expanses of warm water with an average temperature of 28 °C (a greater surface area than Europe), which receives no input of deep-source cold water, rich in nutrient salts.

However, in 2000 analyses of satellite observations on the colour of the ocean conducted by American scientists revealed unusually high concentrations of chlorophyll -the green pigment carried by phytoplankton- in these unfertile areas. These accumulations were associated with the movement of Rossby waves and variations in ocean height they generate (2). An initial hypothesis proposed that Rossby waves induce an intermixing which prompts intermingling between the layers of warm water at the surface and the deep cold nutrient-rich water levels. This mixing wouls generate surface influx of nitrates, favourable for phytoplankton development. This hypothesis cannot explain, however, why the chlorophyll concentration peaks are always observed at the warmest spots where the water accumulates under the effect of the passing waves.

The IRD oceanographers and their co-workers investigating these effects (1) consider rather that the Rossby waves act like a rake over the ocean surface, in this way concentrating all floating particles or debris in these places where warmer water accumulates owing to greater sun exposure. This excludes the possibility of nutrients ascending from the deep cold waters by mixing. In the convergence zones produced by wave movements, there would not be any new production of phytoplankton as had been suggested, but rather an accumulation of floating organic particles of a different origin. This floating material’s optical properties are similar to those of chlorophyll, so it gives the same effect as captured by satellite observation of ocean colour, in a way misleading the calculation systems which use these satellite colour data to estimate the chlorophyll concentration.



The researchers have devised a model for testing this original hypothesis and attempting to identify the origin of these floating particles. Such material would be organic by-products from the biological activity, however low-key, at work in the ocean’s surface layer. Instead of plunging down into the deeper layers, part of this organic debris could come back to the surface, maybe thanks to gas bubbles produced by bacteria during fermentation processes, or riding on lipids (lighter than water), for example.
The simulations performed led to validation of this hypothesis. It was also confirmed by way of measurements of chlorophyll concentration, determined in situ in the surface layer, during quarterly campaigns on "Geochemistry, Phytoplankton and Ocean Colour" in the South Pacific, between Tahiti and New-Zealand (3). These observations suggest that the satellite detection system as designed cannot distinguish between chlorophyll and the organic particles, and that the chlorophyll concentration calculated from images of the convergence zones is overestimated.

This study sheds new light on how marine ecosystem processes work in association with the overall physical dynamics of the ocean. In the oligotrophic oceanic environments in question, the water movements generated by the passage of equatorial waves gathers and accumulates in restricted locations what little organic matter there is. What is initially scattered wide over the ocean surface is concentrated into oases of nutrients for fish. The results provide possible clues to the question of survival of marine species in nutrient-poor habitats. They could have significant applications in fishing and in particular for tuna stock management. However, the exact nature of these floating particles remains, however, to be identified. Research investigations are already planned, notably as part of the MATI and Biosope projects of the national programme Proof.


(1) IRD scientists from the Laboratory of Dynamic Oceanography and Climatology of the Institut Pierre-Simon Laplace (Paris) and the Laboratory of geophysical studies and spatial oceanography (Toulouse), researchers from the MREN (Maison de la recherche en environnement naturel) - UMR 8013 CNRS /Université du Littoral.

(2) Equatorial waves are generated by wind variations, atmospheric pressure, etc. They have been found in all latitudes, but they play a prime role at the Equator which acts as a wave-guide. In the tropics two main types of wave can be distinguished: Kelvin waves, which propagate from West to East along the Equator, and Rossby waves, which slowly cross from East to West in tropical latitudes. Kelvin waves arrive at the American coasts where they are reflected to set off back towards the West, on the North side and and the South side of the Equator, in the form of Rossby waves.

(3) There were 12 of these " GeP&CO " campaigns, conducted from 1999 to 2002 as part of a French national programme Proof (Processus océaniques et flux). The objective was to study the variability of phytoplankton populations and its influence on the geochemistry of the oceans.

Marie Guillaume | IRD
Further information:
http://www.ird.fr/us/actualites/fiches/2003/190.htm
http://www.ird.fr/sais/cgi/TrSaS?nomPopulation=unites&procedure=POPULATION.AfficherObjets&action=ArPAGE&nomObjet=R086
http://www.ird.fr

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>