Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR scientists investigate air above Antarctica

11.12.2003


Four scientists from the National Center for Atmospheric Research (NCAR) are studying the chemistry of sulfur and nitrogen in the air above Antarctica. The investigation will help them understand the continent’s chemical processes better, as well as refine scientists’ interpretations of ice cores, which provide information on past climates.



The expedition, which runs through January 4, is part of the Antarctic Tropospheric Chemistry Investigation (ANTCI), a four-year program funded by NCAR’s primary sponsor, the National Science Foundation. Along with NCAR, 10 universities and federal laboratories are participating in the investigation.

"The atmosphere of Antarctica is probably the least explored part of the lower atmosphere on the planet right now. This is the first time people have looked at any of these chemical processes in this environment," says Lee Mauldin, a chemist from NCAR and one of the project’s co-investigators.


The scientists are studying sulfur to learn more about its oxidation processes, or how it reacts with oxygen. Natural sources of sulfur in the atmosphere include emissions from volcanoes and the oceans. In Antarctica sulfur is released into the air mainly in the form of dimethyl sulfide, a reduced form of sulfur. In the air over Antarctica, the dimethyl sulfide reacts with oxygen to form sulfates. The sulfates are eventually transferred from the air to snow and fall to the ground, where they become part of the snow pack. Scientists drill ice cores deep into the snow pack and measure their sulfate concentrations to determine past geophysical events such as volcanic eruptions, El Niño episodes, and climate change.

The scientists are also studying nitrogen chemistry because they’ve found evidence of high levels of atmospheric nitric oxide, a reactive form of nitrogen, at the South Pole. In most regions of the world, nitric oxide is considered a pollutant, but it occurs naturally at the Pole when the sun shines on nitrate in the snow and a photochemical reaction releases the nitric oxide into the air. Levels are nearly 10 times higher at the Pole than in other parts of Antarctica.

"Sunlight releasing the nitric oxide in the snow is a unique phenomenon that nobody has seen before at the Pole. These levels bring the oxidizing capacity at the South Pole on par with that observed in the tropics, a region where this capacity is expected to be high," Mauldin says. "As to the source of the nitrate in the snow, we don’t know that yet," he adds.

Mauldin says that one of the reasons it is important to understand sulfur and nitrogen processes in Antarctica is because they are natural phenomena happening in one of the more remote regions of the planet. "You need to understand background processes in order to differentiate them from anthropogenic [human-caused] processes when you look at more complicated areas," he says.

Scientists will measure the chemicals from the ground at the South Pole and from the air in different locations above Antarctica. During the airborne component, they’ll fly from McMurdo Station on the coast in a Twin Otter aircraft with air-sampling instruments on board.

As part of ANTCI’s outreach component, a high school teacher from Rockdale County High School in Conyers, Georgia, is accompanying the scientists and will communicate with her students via an interactive Web site that is also available to the public. The teacher, Jill Beach, will help set up experiments, prepare instruments, and compile data, in addition to maintaining the Web site.

"Not only will it be helpful to have another set of hands, but Jill’s going to be able to provide a unique outlook to people back home," Mauldin says.

The scientists will return to Antarctica to take more airborne measurements in 2005 or 2006.


The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under primary sponsorship by the National Science Foundation. Opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Anatta | EurekAlert!
Further information:
http://antci.acd.ucar.edu
http://www.ucar.edu/ucar/

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>