Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Ties African Drought to Ocean Temperatures

13.10.2003


A strong link has been confirmed between sea surface temperatures and precipitation in Africa’s semi-arid Sahel, according to a new study published in Science on October 9th. The study was co-authored by Alessandra Giannini, a climate expert with the International Research Institute for Climate Prediction (IRI), a unit of the Earth Institute at Columbia University.


The time series in the figure above represents variations above or below the long-term mean of rainfall in the Sahel region of Africa (located just south of the Sahara, between 10N and 20N). The observed time series is the average of station observations in the region, while the modeled time series is an areal average of the model’s rendition of the variability. The similarity between the two is a measure of the success of the model in reproducing the observed variability, based on the influence of sea surface temperatures only on the global atmospheric circulation, and on Sahel rainfall. Image credit: Alessandra Giannini



Previously, it was not known how much land use changes may have led to the region’s recent history of prolonged drought, or whether variability in ocean temperatures was the primary driver of the region’s climate. The new study finds that “pervasive evidence” indicates that sea surface temperatures, particularly in the Indian Ocean, are the most powerful indicators of precipitation in the Sahel.

Tropical Pacific surface temperature variation, such as that occurring with the El Niño and Southern Oscillation phenomena, have an effect on the variation of year-to-year rainfall, while the Indian and possibly Atlantic Oceans, affect longer term trends. The new study tracked sea surface temperatures and precipitation rates from 1930-2000, the first time that ocean and climate trends have been studies on a decadal time scale.


If it is true that oceanic warming is the primary driver of precipitation in the Sahel, then by implication climatologists should be able to measure ocean temperatures and predict the likelihood of future precipitation in the Sahel.

As the paper’s authors write: “The recent drying trend in the semi-arid Sahel is attributed to warmer-than-average low latitude waters around Africa which, by favoring the establishment of deep convection over the ocean, weaken the continental convergence associated with the monsoon, and engender widespread drought from Senegal to Ethiopia.”

“What interests me particularly is the potential for seasonal predictions of precipitation in the Sahel, and all the implications and uses for such predictions,” says Giannini. One of the International Research Institute for Climate Prediction (IRI)’s unique strengths is in research connecting climate with health, agriculture, and other human factors affected by rainfall. For instance, at the IRI connections are being investigated between malaria (a wet season disease), meningitis (a dry season disease) and precipitation in Western Africa.

“Land surface factors do feed back into the climate system of the Sahel, but they are a consequence, not the cause, of variability in precipitation,” Giannini explains.

The International Research Institute for Climate Prediction is part of the Earth Institute at Columbia University, the world’s leading academic center for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines –earth sciences, biological sciences, engineering sciences, social sciences and health sciences –and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor.

Jennifer Freeman | Earth Institute News
Further information:
http://www.earth.columbia.edu/news/2003/story10-09-03.html
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>