Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Ties African Drought to Ocean Temperatures

13.10.2003


A strong link has been confirmed between sea surface temperatures and precipitation in Africa’s semi-arid Sahel, according to a new study published in Science on October 9th. The study was co-authored by Alessandra Giannini, a climate expert with the International Research Institute for Climate Prediction (IRI), a unit of the Earth Institute at Columbia University.


The time series in the figure above represents variations above or below the long-term mean of rainfall in the Sahel region of Africa (located just south of the Sahara, between 10N and 20N). The observed time series is the average of station observations in the region, while the modeled time series is an areal average of the model’s rendition of the variability. The similarity between the two is a measure of the success of the model in reproducing the observed variability, based on the influence of sea surface temperatures only on the global atmospheric circulation, and on Sahel rainfall. Image credit: Alessandra Giannini



Previously, it was not known how much land use changes may have led to the region’s recent history of prolonged drought, or whether variability in ocean temperatures was the primary driver of the region’s climate. The new study finds that “pervasive evidence” indicates that sea surface temperatures, particularly in the Indian Ocean, are the most powerful indicators of precipitation in the Sahel.

Tropical Pacific surface temperature variation, such as that occurring with the El Niño and Southern Oscillation phenomena, have an effect on the variation of year-to-year rainfall, while the Indian and possibly Atlantic Oceans, affect longer term trends. The new study tracked sea surface temperatures and precipitation rates from 1930-2000, the first time that ocean and climate trends have been studies on a decadal time scale.


If it is true that oceanic warming is the primary driver of precipitation in the Sahel, then by implication climatologists should be able to measure ocean temperatures and predict the likelihood of future precipitation in the Sahel.

As the paper’s authors write: “The recent drying trend in the semi-arid Sahel is attributed to warmer-than-average low latitude waters around Africa which, by favoring the establishment of deep convection over the ocean, weaken the continental convergence associated with the monsoon, and engender widespread drought from Senegal to Ethiopia.”

“What interests me particularly is the potential for seasonal predictions of precipitation in the Sahel, and all the implications and uses for such predictions,” says Giannini. One of the International Research Institute for Climate Prediction (IRI)’s unique strengths is in research connecting climate with health, agriculture, and other human factors affected by rainfall. For instance, at the IRI connections are being investigated between malaria (a wet season disease), meningitis (a dry season disease) and precipitation in Western Africa.

“Land surface factors do feed back into the climate system of the Sahel, but they are a consequence, not the cause, of variability in precipitation,” Giannini explains.

The International Research Institute for Climate Prediction is part of the Earth Institute at Columbia University, the world’s leading academic center for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines –earth sciences, biological sciences, engineering sciences, social sciences and health sciences –and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor.

Jennifer Freeman | Earth Institute News
Further information:
http://www.earth.columbia.edu/news/2003/story10-09-03.html
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>