Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mediterranean hot flush detected after scorching summer

24.09.2003


Sea Surface Temperature around Crete, 31 August 2003


Sea Surface Temperature around Crete, 30 August 2002


Our record-breaking long hot summer heated Europe’s seas as well as the land. Results returned from ESA’s Envisat environmental satellite show Mediterranean waters off Crete around three degrees Celsius warmer than the previous year.

The top image represents sea surface temperature around the island for 31 August 2003, while the second image shows it for 30 August 2002. The brighter the colour the higher the temperature: there is a five-degree difference between the two recorded in waters north of Crete, and a two-to-three degree difference south of Crete. The maximum (bright red) temperature shown in the two images is 25 degrees, the minimum (dark blue) is 16 degrees. Areas in black are either land or covered by cloud.

The data come from Envisat’s Advanced Along Track Radiometer (AATSR), which functions like a space-based thermometer. The instrument records infrared wavelengths of light to calculate sea surface temperature to an accuracy of 0.3 degrees and a spatial resolution of 1 sq km. The images were prepared for ESA by the Rutherford Appleton Laboratory.


"The difference between the two years is a striking demonstration of how variable the climate can be," said Professor David Llewellyn-Jones of University of Leicester, the Principal Investigator for AATSR. "Sea surface temperature is an especially important factor in climate studies because it takes a long time and the transfer of a lot of heat to change it.

"The oceans actually represent an enormous reservoir of heat. It’s not generally realised but they absorb directly the majority of energy radiated from the Sun due to their surface area – covering about 71 per cent of the Earth’s surface. The oceans then transfer heat directly to the atmosphere."

The oceans are a good indicator of possible climate change because they actually store a huge amount of solar heat, and their temperatures are an indication of how much heat they hold. They take much longer to warm up or cool down by comparison to the land or the air, so sea surface temperature records can be used to help identify longer-term climatic trends.

"By themselves, these particular AATSR images just show us is that the climate varies – and that’s nothing new, climate is always fluctuating," said Llewellyn-Jones. "And these are images of two different days in a single locality. Where the AATSR data really become useful are on a larger scale, and over a long time scale."

Earlier versions of the AATSR flew aboard ESA’s previous ERS-1 and ERS-2 spacecraft, so a near-continuous dataset of comparable measurements exists for the last 12 years. And by the time Envisat finishes its mission another five years - or more - will be added to this figure.

"Studying climate models show us we need at least 15 years worth of data to differentiate a definite global temperature increase from the normal variability of climate," explained Llewellyn-Jones. "Preliminary analysis of existing results does indicate a general upward trend, but we will be more certain with more time and more data."

The UK’s Department for Environment, Food and Rural Affairs (DEFRA) and National Environment Research Council (NERC) developed AATSR along with an additional funding contribution from Australia. The instrument can also be used to measure cloud characteristics, land surface cover, plant health and even see forest blazes as they burn. It is one of ten instruments aboard ESA’s Envisat environmental satellite, orbiting the Earth every 100 minutes from 800 km up.

Henri Laur | ESA
Further information:
http://www.esa.int/export/esaSA/SEMRAD0P4HD_earth_0.html

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>