Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search-And-Rescue Robots Practice Emergency Response to Simulated Earthquake

28.08.2003


Researchers see how robots respond in real-world rescue operations with FEMA’s Indiana Task Force 1

An earthquake has just laid waste to a small town. Major roads are impassable, and downed trees have cut power. Worse yet, the local library collapsed during the sudden temblor, trapping a half-dozen patrons. The robots are rushed in to help locate and free the survivors.

That was the scenario facing a group of 14 researchers and a crew of search-and-rescue robots as they embarked on an arduous 26hour field exercise in Lebanon, Indiana, alongside professional emergency response personnel. The exercise was designed to elicit research issues and practical matters that robot developers might overlook or take for granted, such as the special requirements for maneuvering a robot with only a robot’s eye view, the need to operate the robot while wearing safety gloves, working while exhausted and designing controls that can be mastered with a week, not months, of training.

"Until you experience a rescue operation, it’s hard to understand the real research questions that must be addressed for this technology to be transferred to search-and-rescue users," said Robin Murphy, director of the Center for Robot-Assisted Search and Rescue (CRASAR) at the University of South Florida.

CRASAR and Indiana Task Force 1, one of 28 urban search-andrescue task forces established by the Federal Emergency Management Agency (FEMA), organized the training exercise with support from the National Science Foundation (NSF), the independent federal agency that supports fundamental research and education across all fields of science and engineering. The exercise participants included mechanical and electrical engineers, computer scientists, cognitive psychologists and organizational scientists. v "We’re using the same search tools we’ve used for 15 years-the robots are going to change that," said Lt. David Hatter, an Indiana Task Force search team manager, at a briefing to the technical search team before the exercise.

"The importance of this exercise and others like it is to evaluate the equipment before we have to use it in a real disaster," said Sam Stover, the technical search expert with the Indiana Task Force and the director of operations for CRASAR’s search-and-rescue team. "Nine-eleven brought a whole new reality to our country."

To simulate the earthquake’s aftermath, the task force partially demolished the former town library in Lebanon, about 25 miles from Indianapolis, where the task force is based. After the hazardous materials team gave the "all clear," the task force members executed their disaster deployment procedures to rescue the six mannequin victims.

Working alongside the human task force members, the CRASAR and exercise participants brought several "man-packable platforms"-search-and-rescue lingo for robots carried to the scene strapped to the back of a human operator. The robots were equipped with instruments including infrared cameras, night vision sensors and millimeter-wave radar. The exercise gave the researchers a chance to try out sensors and robots, collect performance data and put a real-world face on what would otherwise be hypothetical situations.

In one scenario, CRASAR graduate student Jennifer Carlson lowered a robot into a damaged basement. She successfully found the victim, but the process took longer than she expected, Carlson said, because she quickly lost track of her robot’s exact location. The camera’s limited field of view cuts out cues that the human mind uses to keep a sense of one’s surroundings. In addition, an adult is typically not used to the floor-level vantage point from a shoebox-sized robot, which makes everything appear larger.

Carlson’s difficulty showed that research is needed on the information the robot should provide about its position and orientation. A person just knows which direction her eyes are looking, but a robot operator faces the added task of remembering whether the robot and the robot’s camera are pointing up, down, left or right. This unnatural effort contributes to disorientation, particularly in high-stress situations, like search-and-rescue operations.

At the same time, CRASAR is learning that the robots don’t need to be autonomous; they just need to be able to respond to one or two simple commands and to give a signal. "That’s a fundamental change in how we think about the robots," Murphy said. "There’s a lot of research yet to be done that will have an impact outside the search-and-rescue community about how we interact with technology."

CRASAR maintains a self-sufficient response team with a cache of robots ready for rapid deployment within four hours nationally and internationally and is the only international response team specializing in rescue robots recognized by the United Nations. CRASAR’s robots faced their first major test in the days following the collapse of the World Trade Center towers, extending the senses of the rescue workers into areas that personnel and dogs couldn’t go. In December 2002, CRASAR conducted the first use of rescue robots in a joint international exercise in Johannesburg, South Africa.

To accelerate the pace at which research advances are transferred to emergency responders, NSF is also supporting CRASAR in establishing an Industry-University Cooperative Research Center at the University of South Florida, in partnership with the University of Minnesota and other universities on Safety, Security and Rescue Robotics.

"My hope is that in five years, when you see a disaster or earthquake on television, you immediately know what you’re going to see," Murphy said. "You’re going to see people in FEMA hard hats, you’re going to see dogs and you’re going to see robots. You’re just going to expect a rescue to have robots. It’s going to be that standard."

David Hart | NSF
Further information:
http://www.crasar.org
http://www.nsf.gov/

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>