Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric bromine, which attacks ozone layer, is decreasing

14.08.2003


Researchers have discovered that total bromine in the lower atmosphere has been decreasing since 1998 and is now more than five percent below the peak reached that year. Bromine is one of the most active destroyers of the stratospheric ozone layer, which forms an invisible shield around the Earth, protecting it from the biologically damaging ultraviolet rays of the Sun.



Stephen A. Montzka and colleagues from the National Oceanic and Atmospheric Administration’s Climate Monitoring and Diagnostics Laboratory in Boulder, Colorado, attribute the decline of total bromine primarily to international restrictions on industrial production of methyl bromide. Their report will be published August 15 in the journal Geophysical Research Letters.

"The decrease is driven by a large and rapid decline in methyl bromide, a brominated gas that is regulated internationally by the Montreal Protocol," said Montzka. The surprisingly large drop in atmospheric methyl bromide, about 13 percent since 1998, has more than offset the small increases still observed for bromine from fire-extinguishing agents known as halons. Bromine is about 50 times more efficient than chlorine at destroying stratospheric ozone.


"This is welcome news for stratospheric ozone because it means that less bromine and chlorine have been entering the upper atmosphere [stratosphere], where the ozone layer resides, for a number of years now," said Montzka. Furthermore, while chlorine’s decline in the lower atmosphere had been slowing in recent years, these new data suggest that the overall threat posed to stratospheric ozone from all halogenated gases continues to steadily diminish, Montzka said.

Methyl bromide is produced industrially for use as a fumigant in agriculture and in the shipment of commercial goods. It is unique among ozone-depleting substances regulated by the Montreal Protocol, in that it also has substantial natural sources, including the oceans, wetlands, some plants, and burning vegetation.

Global industrial production of methyl bromide has declined in recent years in response to restrictions outlined in the amended Montreal Protocol, say the researchers. The Montreal Protocol, which limits production of ozone-damaging compounds, was originally signed by 23 nations in 1987 and has been strengthened through revisions and amendments since then.

Methyl bromide and halons together account for nearly all of the human-released bromine that reaches the stratosphere. The NOAA scientists were able to discern the reversal in the long-term upward trend for bromine based on their ground-based measurements of methyl bromide and halons over the past eight years at 10 stations around the globe, including Cape Grim, Tasmania; the South Pole; Mauna Loa, Hawaii; and Barrow, Alaska.

The decrease in bromine is large compared to the decline documented earlier for chlorine. With this new result, the authors determined that overall ozone-depleting gases are declining faster than previously thought. International efforts to reduce industrial production of methyl bromide have had a noticeable impact on overall atmospheric levels of ozone-depleting substances, they say.

This good news must be tempered, however, because bromine from halons is still increasing slowly. But, says Montzka, "the surprisingly large decline observed for methyl bromide now dominates the overall trend for bromine." Full recovery of the ozone layer is still expected to take several decades, provided atmospheric levels of both bromine and chlorine continue to drop.

The researchers note that these encouraging trends could change. "Decreases in ozone-depleting substances are a direct result of international limits on production," said Montzka. "Without continued worldwide adherence to the restrictions outlined in the Protocol, these trends could slow and delay the recovery of stratospheric ozone."

The research was funded by NOAA.

Harvey Leifert | AGU

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>