Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric bromine, which attacks ozone layer, is decreasing

14.08.2003


Researchers have discovered that total bromine in the lower atmosphere has been decreasing since 1998 and is now more than five percent below the peak reached that year. Bromine is one of the most active destroyers of the stratospheric ozone layer, which forms an invisible shield around the Earth, protecting it from the biologically damaging ultraviolet rays of the Sun.



Stephen A. Montzka and colleagues from the National Oceanic and Atmospheric Administration’s Climate Monitoring and Diagnostics Laboratory in Boulder, Colorado, attribute the decline of total bromine primarily to international restrictions on industrial production of methyl bromide. Their report will be published August 15 in the journal Geophysical Research Letters.

"The decrease is driven by a large and rapid decline in methyl bromide, a brominated gas that is regulated internationally by the Montreal Protocol," said Montzka. The surprisingly large drop in atmospheric methyl bromide, about 13 percent since 1998, has more than offset the small increases still observed for bromine from fire-extinguishing agents known as halons. Bromine is about 50 times more efficient than chlorine at destroying stratospheric ozone.


"This is welcome news for stratospheric ozone because it means that less bromine and chlorine have been entering the upper atmosphere [stratosphere], where the ozone layer resides, for a number of years now," said Montzka. Furthermore, while chlorine’s decline in the lower atmosphere had been slowing in recent years, these new data suggest that the overall threat posed to stratospheric ozone from all halogenated gases continues to steadily diminish, Montzka said.

Methyl bromide is produced industrially for use as a fumigant in agriculture and in the shipment of commercial goods. It is unique among ozone-depleting substances regulated by the Montreal Protocol, in that it also has substantial natural sources, including the oceans, wetlands, some plants, and burning vegetation.

Global industrial production of methyl bromide has declined in recent years in response to restrictions outlined in the amended Montreal Protocol, say the researchers. The Montreal Protocol, which limits production of ozone-damaging compounds, was originally signed by 23 nations in 1987 and has been strengthened through revisions and amendments since then.

Methyl bromide and halons together account for nearly all of the human-released bromine that reaches the stratosphere. The NOAA scientists were able to discern the reversal in the long-term upward trend for bromine based on their ground-based measurements of methyl bromide and halons over the past eight years at 10 stations around the globe, including Cape Grim, Tasmania; the South Pole; Mauna Loa, Hawaii; and Barrow, Alaska.

The decrease in bromine is large compared to the decline documented earlier for chlorine. With this new result, the authors determined that overall ozone-depleting gases are declining faster than previously thought. International efforts to reduce industrial production of methyl bromide have had a noticeable impact on overall atmospheric levels of ozone-depleting substances, they say.

This good news must be tempered, however, because bromine from halons is still increasing slowly. But, says Montzka, "the surprisingly large decline observed for methyl bromide now dominates the overall trend for bromine." Full recovery of the ozone layer is still expected to take several decades, provided atmospheric levels of both bromine and chlorine continue to drop.

The researchers note that these encouraging trends could change. "Decreases in ozone-depleting substances are a direct result of international limits on production," said Montzka. "Without continued worldwide adherence to the restrictions outlined in the Protocol, these trends could slow and delay the recovery of stratospheric ozone."

The research was funded by NOAA.

Harvey Leifert | AGU

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>