Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA ozone satellite improves snowstorm forecasts

08.08.2003


Scientists in sunny, hot Florida are thinking cold thoughts since they added ozone measurements from a NASA satellite into computer weather forecast models and improved several factors in a forecast of a major winter snowstorm that hit the United States in 2000.





When scientists added ozone measurements, predictions of snowstorm intensity, snowfall amounts and the storm track all improved for a storm that hit Washington, D.C. As such, they may be able to do the same for future storms, according to a study published in a recent issue of the American Meteorological Society’s Journal of Applied Meteorology.

Kun-Il Jang and Xiaolei Zou, research scientists from Florida State University, used data from NASA’s Earth Probe/Total Ozone Mapping Spectrometer (TOMS) satellite to create a more accurate prediction of a January 2000 snowstorm in the Washington metropolitan area. Other researchers included Mel Shapiro of the National Oceanic and Atmospheric Administration’s (NOAA) Environmental Technology Laboratory (ETL), Manuel Pondeca of NOAA’s National Center for Environmental Prediction (NCEP), C. Davis of the National Center for Atmospheric Research (NCAR), Boulder, Colo., and A. Krueger of the University of Maryland, Baltimore County.


The TOMS satellite monitors daily changes in the amounts of ozone in Earth’s atmosphere stretching from the Earth’s surface into the stratosphere, as high as 30 miles up. In this study, the scientists decided to add ozone data to an historic forecast and improved it.

The scientists added air motions in the upper atmosphere inferred from TOMS measurements of ozone into the computer model, along with lower troposphere readings taken during the event of temperature, humidity, wind, and dewpoint from balloon-borne sensors called radiosondes. Together, the two data sources created an accurate picture of the total atmosphere where the weather occurs. Current forecast models just use the radiosonde data of precipitation and temperature.

"The 36-hour forecasts using the radiosonde data were more accurate than those just using the computer forecast model," Jang said. "The addition of ozone data into the forecast model moved the storm prediction closer to the East coast, which is what really happened." When the ozone data was added into the mix, it reduced errors on predicted storm tracks, especially in the 12- to 24-hours period. The findings were verified with multi-sensor hourly precipitation totals from NOAA/NCEP.

By better knowing when and where the heaviest snow will fall during a storm, public works departments can direct their snow moving equipment and can estimate where problem areas may occur. Other potential uses of this forecast model include 36-hour advanced predictions of different forms of air movement.

Previous research links atmospheric movements, such as wind, heat and moisture to ozone measurements. These movements occur horizontally across the Earth’s surface, as well as vertically from the surface up, and sometimes stretch over several hundred miles or more.

One of the most noticeable areas of motion is in the vicinity of the jet stream, and the movement of ozone helps identify its location. The jet stream is a river of fast moving air in the upper atmosphere that steers storms around the world. Knowing the exact location of the jet stream would give forecasters a better idea of where storms may move. In the northern hemisphere, it moves from west to east and divides colder air from warmer air.

More case studies are being conducted to fully assess the usefulness of assimilating TOMS ozone data for more accurate weather prediction.

NASA’s Earth Science Enterprise office partially funded this research. The Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve predication of climate, weather, and natural hazards using the unique vantage point of space

Rob Gutro | NASA
Further information:
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>