Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UCSB earthquake study improves model, shows hazard to structures located near the fault

12.03.2003


Thanks to recent advances in parallel computing, an interdisciplinary team of scientists at the University of California, Santa Barbara has discovered a peculiar and important aspect of how seismic waves are generated during an earthquake. The results are published in the March 7 edition of Science Magazine.



The team, whose work is supported by the Keck Foundation, was composed of physics graduate student Eric M. Dunham, professor of physics Jean M. Carlson, and postdoctoral researcher Pascal Favreau, who was based at UCSB’s Institute for Crustal Studies. They modeled earthquakes using computer simulations of rapidly expanding three-dimensional ruptures along faults. They found that sections of the fault with increased material strength (called barriers) focus the earthquake’s energy to an unexpected degree. This result comes as a surprise, since hard-to-break barriers were previously considered obstacles to the growing rupture.

The energy concentration has several important implications. When barriers break, they release intense bursts of seismic waves that pose significant hazards to structures located near the fault. This explains puzzling records of the 1984 Morgan Hill earthquake that struck the area south of San Jose, California. During this quake there was an intense pulse of ground shaking traced to a high strength region of the fault, rather than the rupture front which is typically the source of the strongest seismic waves. Furthermore, the researchers are the first to show how this energy concentration drives the rupture ahead of where it would have been had the fault been easier to break.


They showed that the rupture can even propagate faster than shear wave speed, typically considered the speed limit of growing earthquakes. This "supershear" propagation, once regarded as a mathematical curiosity, has become an area of growing interest after experimental observations gave support to controversial reports of supershear bursts occurring during several major earthquakes.


First author Eric Dunham was awarded Outstanding Student Paper from the American Geophysical Union for this article. Jean Carlson and Pascal Favreau are listed as co-authors.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>