Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane and mini-horses: Fossils reveal effects of global warming

17.02.2003


How will global warming affect life on Earth? Uncertainties about future climate change and the impact of human activity make it difficult to predict exactly what lies ahead. But the past offers clues, say scientists who are studying a period of warming that occurred about 55 million years ago.



In a joint project of the University of Michigan, the University of New Hampshire and the Smithsonian Institution, researchers have been analyzing fossils from the badlands of Wyoming found in a distinctive layer of bright red sedimentary rock that was deposited at the boundary between the Paleocene and Eocene epochs---a time of apparent sudden climate change. The researchers described their findings in a paper presented Feb. 16 at the annual meeting of the American Association for the Advancement of Science.

"The interval of Earth history that we’re studying is marked by a short-term global warming event thought to have occurred when something triggered the release of methane from methane clathrate---a kind of ’methane ice’ found in ocean sediments," said Philip D. Gingerich, professor of geological sciences at the University of Michigan. Within about 10,000 years of peak warming, mammals such as primates and the groups that include horses and deer appeared together for the first time in North America, apparently having crossed land bridges from other continents.


As the warm spell continued, the animals showed an intriguing response: they became smaller. For example, "horses from this period that had been the size of a small dog were reduced to the size of a Siamese cat," Gingerich said. When the climate returned to normal, the animals became normal size again. To understand why dwarf versions of the various animals appeared and then disappeared from the fossil record, Gingerich turned to colleagues at the University of Michigan Biological Station who are studying the effects of elevated carbon dioxide levels---associated with global warming---on plant growth.

"They find that if you grow plants in a carbon dioxide-rich atmosphere, the plants love it. They grow fast. It’s easy for them." But in the process, the plants incorporate less protein and more defensive compounds than they normally would. Insects that eat these plants grow more slowly, and the same might be true of mammals, Gingerich reasoned.

Furthermore, "the reproductive cycles of mammals that live in seasonal environments are tuned to seasonal cycles," Gingerich said. "If an animal has a one- or two-year period in which to grow to maturity and reproduce, and it’s trying to do that on a diet that’s difficult to digest and not very nutritious, it’s not surprising that it would evolve to be smaller. And it’s also not surprising that when times are good again and carbon dioxide levels are lower and plants grow like they normally should, that the animals would go back to what we think of as their normal size."

It’s not clear whether the body size trends represent true evolutionary change or whether the larger species were simply replaced by smaller sister species, but Gingerich hopes to answer that question as he continues to work on the project.

He and his coworkers, William C. Clyde of the University of New Hampshire and Scott L. Wing and Guy J. Harrington of the Smithsonian Institution, also hope their work will improve understanding of climate change in general.

"This is a model of an event in the past that involved change and recovery from change," Gingerich said. "During that 80,000-year period, mammals didn’t go extinct; they adapted through dwarfing. And eventually, the system worked itself back to the previous state."

But just because Earth and its inhabitants recovered from global warming in the past don’t assume we have nothing to worry about now, Gingerich cautions. "In today’s Earth, additional warming could set off a methane release that would bump the Earth’s temperature up by several degrees---enough to melt polar ice and raise sea level and cause many other problems that would be difficult to survive. That’s what makes the temperature rises we’re measuring now more worrisome than those that occurred in the past."


The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399

Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853
E-mail: rossflan@umich.edu

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu/~newsinfo
http://www.umich.edu/news

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>