Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass study reconsiders formation of Antarctic ice sheet

16.01.2003


Findings detailed in Jan. 16 issue of Nature; greenhouse gases implicated



A study by University of Massachusetts Amherst geoscientist Robert DeConto posits an alternative theory regarding why Antarctica suddenly became glaciated 34 million years ago. The study challenges previous thinking about why the ice sheet formed and holds ramifications for the next several hundred years as greenhouse gases continue to rise. DeConto, who collaborated with David Pollard of Pennsylvania State University, has published the findings in the Jan. 16 issue of the journal Nature. The work was funded by the National Science Foundation.

"Scientists have long known that Antarctica was not always covered in a sheet of ice. Rather, the continent was once highly vegetated and populated with dinosaurs, with perhaps just a few Alpine glaciers and small ice caps in the continental interior," DeConto explained. "In fact, the Antarctic peninsula is thought to have been a temperate rainforest." Previous research on microfossils and ocean chemistry had already revealed that the Antarctic ice sheet may have developed over a period of just 50,000 years or even less, "the flip of a light switch in geologic terms," said DeConto. The dramatic shift occurred at the cusp of the Eocene and Oligocene eras. "The question," noted DeConto, "is why did it happen then, and why did it happen so quickly?"


A theory put forth in the 1970s suggested that plate tectonics was the driving force in Antarctic glaciation. "Pangea, the ’supercontinent,’ was breaking up. Australia was pulling away to the north, opening an ocean channel known as the Tasmanian passage." Scientists theorized that as South America drifted away from the Antarctic Peninsula, the Drake passage opened. "This was thought to be the last barrier to an ocean current circumventing the continent. This current would have deflected warmer, northern waters and served to keep the continent chilled, and the Southern Oceans cool." The theory was known as "thermal isolation."

DeConto and Pollard wanted to determine how important the opening of the Southern Ocean passages actually was in the rapid glaciation of Antarctica. Among the factors they considered were: heat transport in the oceans; plate tectonics; carbon dioxide levels in the atmosphere; and orbital variation. "We wanted to know whether the opening of ocean gateways was the primary cause of the glaciation, or whether the change was due to a combination of factors," DeConto said.

The team turned to powerful computer technology in developing the new theory. Using computer simulations, the scientists essentially recreated the world of 34 million years ago, including a detailed topography of Antarctica and the placement of the drifting continents. Topography was particularly important, DeConto explained, because "if you have mountains that lift the snow into higher elevations, you have a better chance of maintaining snow all summer. This persistence is the key factor in formation of the ice sheet."

The team then plugged in the factors previously mentioned: plate tectonics, climate, orbital variation, and the Earth’s procession. The computer played out the scenario for 10 million years, taking into account the gradual drop in carbon dioxide in the atmosphere that is thought to have occurred in the Earth’s atmosphere during this period in Earth’s history. The scientists ran the simulation twice: "The two simulations were identical except in the second, a change in heat transport to replicate the opening of the Drake passage, to see how big an effect that gateway was."

"This research points out the value of fundamental climate research," said David Verardo, Director of the NSF’s Paleoclimate Program, which funded the research. "In short, DeConto and Pollard have shown, by using paleoclimatic models for a distant era, the power of atmospheric CO2 to produce rapid environmental change of gargantuan proportions. Furthermore, such effects can not be described by neat and simple regional patterns of variability."

"Our study indicates that carbon dioxide is the critical factor," DeConto said. "CO2 appears to be the factor that preconditions the system to become sensitive to other elements of the climate system. It was the first critical boundary and the determinant in the glaciation of the Antarctic continent.

"Carbon dioxide is a very important knob for changing climate, and is perhaps the fundamental control,"said DeConto. "This study indicates that the Earth’s climate is rapidly being pushed into a circumstance that hasn’t existed for a very long time; we’re returning to levels of carbon dioxide that have not been seen since before the Antarctic ice sheet." This doesn’t mean that Antarctica is going to melt in the next 100 years, he noted, "but it’s important to be aware that the CO2 levels are rising very quickly."


Note: Robert DeConto can be reached at 413-545-3426 or deconto@geo.umass.edu

Elizabeth Luciano | EurekAlert!
Further information:
http://www.umass.edu/

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>