Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waves in the atmosphere batter south pole, shrink 2002 ozone hole

10.12.2002


A greater number of large "planetary sized waves" in the atmosphere that move from the lower atmosphere into the upper atmosphere were responsible for the smaller Antarctic ozone hole this fall, according to NASA researchers. The September 2002 ozone hole was half the size it was in 2000. However, scientists say that these large-scale weather patterns in the Earth’s atmosphere are not an indication that the ozone layer is recovering.



Paul Newman, a lead researcher on ozone at NASA’s Goddard Space Flight Center, Greenbelt, Md., said that large scale weather patterns have an affect on ozone when large "planetary sized waves" move up into ozone layer. If the waves are more frequent and stronger as they move from the surface to the upper atmosphere, they warm the upper air. Such weather phenomena are known as "stratospheric warmings."

The stratosphere is an atmospheric layer about 6 to 30 miles above the Earth’s surface where the ozone layer is found. Ozone breaks down more easily with colder temperatures. A long wave or planetary wave is a weather system that circles the world. It resembles a series of ocean waves with ridges (the high points) and troughs (the low points).


Typically, at any given time, there are between one and three of these waves looping around the Earth. With more or stronger atmospheric waves, temperatures warm aloft. The warmer the upper air around the "polar vortex" or rotating column of winds that reach into the upper atmosphere where the protective ozone layer is, the less ozone is depleted.

Click here for an animation of the hole’s progression. (5.7 MB animation)
Newman said, "The Southern Hemisphere large scale weather systems are similar to the semi-permanent area of high pressure, which brought sunshine and dry conditions over much of the eastern United States during the 2002 summer." These large Southern Hemisphere weather systems generated more frequent and stronger planetary waves that caused a series of stratospheric warmings during the Southern winter. Scientists aren’t exactly certain why that happened. What they are certain of is that these waves warmed the upper atmosphere at the poles, and cut ozone loss.

"2002 was a year of record setting planetary waves in both frequency and strength," Newman said. As a result, the total area of the ozone hole over the Antarctic was just over 15 million square kilometers (km) (5.8 million square miles) in late September. The ozone hole was virtually gone by late-October, one of its earliest disappearances since 1988.

Comparatively, the 2001 Antarctic ozone hole was over 26.5 million km squared (10.2 million square miles), larger than the entire area of North America including the U.S., Canada and Mexico combined. In the year 2000, it was approximately 30 million km squared (11.5 million square miles). The last time the ozone hole was as small as it is this year was 1988, and that was also most likely due to large scale surface weather systems.

"This is an entirely different factor from chemicals in the atmosphere that affects the protective ozone layer," Newman said. The Montreal Protocol regulated chlorofluorocarbons (CFCs) in 1987, because of their destructive affect on the ozone layer. However, CFCs still linger in the upper atmosphere. "The main reason why the ozone hole is smaller this year than last is simply because of higher temperatures from these waves. Decreases of CFCs are only causing the ozone hole to decrease by about 1% per year." It could be an entirely different story next year, if similar weather systems are not in place.

The waves affect the atmospheric circulation in the Antarctic by strengthening it and warming temperatures, or weakening it and cooling temperatures. Colder temperatures cause polar clouds to form, which lead to chemical reactions that affect the chemical form of chlorine in the stratosphere. In certain chemical forms, chlorine can deplete the ozone layer. One theory is that greenhouse gases may be responsible for decreasing the number of waves that enter the stratosphere, which then thins the ozone layer.

The temperature of the polar lower stratosphere during September is a key in understanding the size of the ozone hole - and the temperature at that time is usually driven by the strength and duration of "planetary waves" spreading into the stratosphere.

Newman stressed that the smaller ozone hole this fall is not an indication that the ozone layer is recovering. He said it’s simply due to a change in global weather patterns for this year, and next year it may likely be as large as it was last year.

This poster, "The 2002 Antarctic Ozone Hole," will be presented at the American Geophysical Union Fall 2002 Meeting in the Moscone Convention Center, in Hall D on Friday, December 6, 2002 at 8:30 a.m. (Pacific Time) Session # A51B-0044.

Cynthia M. O’Carroll | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>