Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waves in the atmosphere batter south pole, shrink 2002 ozone hole

10.12.2002


A greater number of large "planetary sized waves" in the atmosphere that move from the lower atmosphere into the upper atmosphere were responsible for the smaller Antarctic ozone hole this fall, according to NASA researchers. The September 2002 ozone hole was half the size it was in 2000. However, scientists say that these large-scale weather patterns in the Earth’s atmosphere are not an indication that the ozone layer is recovering.



Paul Newman, a lead researcher on ozone at NASA’s Goddard Space Flight Center, Greenbelt, Md., said that large scale weather patterns have an affect on ozone when large "planetary sized waves" move up into ozone layer. If the waves are more frequent and stronger as they move from the surface to the upper atmosphere, they warm the upper air. Such weather phenomena are known as "stratospheric warmings."

The stratosphere is an atmospheric layer about 6 to 30 miles above the Earth’s surface where the ozone layer is found. Ozone breaks down more easily with colder temperatures. A long wave or planetary wave is a weather system that circles the world. It resembles a series of ocean waves with ridges (the high points) and troughs (the low points).


Typically, at any given time, there are between one and three of these waves looping around the Earth. With more or stronger atmospheric waves, temperatures warm aloft. The warmer the upper air around the "polar vortex" or rotating column of winds that reach into the upper atmosphere where the protective ozone layer is, the less ozone is depleted.

Click here for an animation of the hole’s progression. (5.7 MB animation)
Newman said, "The Southern Hemisphere large scale weather systems are similar to the semi-permanent area of high pressure, which brought sunshine and dry conditions over much of the eastern United States during the 2002 summer." These large Southern Hemisphere weather systems generated more frequent and stronger planetary waves that caused a series of stratospheric warmings during the Southern winter. Scientists aren’t exactly certain why that happened. What they are certain of is that these waves warmed the upper atmosphere at the poles, and cut ozone loss.

"2002 was a year of record setting planetary waves in both frequency and strength," Newman said. As a result, the total area of the ozone hole over the Antarctic was just over 15 million square kilometers (km) (5.8 million square miles) in late September. The ozone hole was virtually gone by late-October, one of its earliest disappearances since 1988.

Comparatively, the 2001 Antarctic ozone hole was over 26.5 million km squared (10.2 million square miles), larger than the entire area of North America including the U.S., Canada and Mexico combined. In the year 2000, it was approximately 30 million km squared (11.5 million square miles). The last time the ozone hole was as small as it is this year was 1988, and that was also most likely due to large scale surface weather systems.

"This is an entirely different factor from chemicals in the atmosphere that affects the protective ozone layer," Newman said. The Montreal Protocol regulated chlorofluorocarbons (CFCs) in 1987, because of their destructive affect on the ozone layer. However, CFCs still linger in the upper atmosphere. "The main reason why the ozone hole is smaller this year than last is simply because of higher temperatures from these waves. Decreases of CFCs are only causing the ozone hole to decrease by about 1% per year." It could be an entirely different story next year, if similar weather systems are not in place.

The waves affect the atmospheric circulation in the Antarctic by strengthening it and warming temperatures, or weakening it and cooling temperatures. Colder temperatures cause polar clouds to form, which lead to chemical reactions that affect the chemical form of chlorine in the stratosphere. In certain chemical forms, chlorine can deplete the ozone layer. One theory is that greenhouse gases may be responsible for decreasing the number of waves that enter the stratosphere, which then thins the ozone layer.

The temperature of the polar lower stratosphere during September is a key in understanding the size of the ozone hole - and the temperature at that time is usually driven by the strength and duration of "planetary waves" spreading into the stratosphere.

Newman stressed that the smaller ozone hole this fall is not an indication that the ozone layer is recovering. He said it’s simply due to a change in global weather patterns for this year, and next year it may likely be as large as it was last year.

This poster, "The 2002 Antarctic Ozone Hole," will be presented at the American Geophysical Union Fall 2002 Meeting in the Moscone Convention Center, in Hall D on Friday, December 6, 2002 at 8:30 a.m. (Pacific Time) Session # A51B-0044.

Cynthia M. O’Carroll | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>