Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Better weather predictions in an avalanche of data


Sometimes getting too much of a good thing may create more problems than not getting enough - especially when it comes to the weather. Just ask Texas A&M University atmospheric scientist Fuqing Zhang, whose ensemble weather forecasting research is burdened with trillions of bytes of real-time data.

Zhang’s quest, funded by a National Science Foundation grant of $295,500, is to find the best way to assimilate the most recent weather observation data for input into the latest computer forecasting models.

"Right now, we have good computer programs to help us forecast tomorrow’s weather," Zhang said. "For example, the official U.S. weather forecast, issued by the National Center for Environmental Protection (NCEP), part of the National Oceanographic and Atmospheric Agency (NOAA), is completely computer generated, untouched, as it were, by human hands.

"The problem is that we have overwhelming amounts of data to put into such models," he continued. "We receive numbers on wind, water, temperature from surface weather stations, weather balloons, national Doppler radar coverage and satellites at rates that vary from minutes to hours to days. All this data is hard to integrate for computer input because it varies according to the different spatial, geographic and temporal scales over which it was collected. In addition, many of the measurements are indirect indicators of physical conditions.

"So, we need to come up with better ways to digest all this data in order to have immediate impacts on our daily weather predictions."

Zhang and his team of collaborators from NOAA, the National Center for Atmospheric Research (NCAR) and the University of Washington (Seattle) are hoping to help forecasting computers’ data digestion processes through use of innovative statistical techniques permitting ensemble-based data assimilation.

"Ensemble-based data assimilation focuses on better ways to incorporate the uncertainties surrounding both yesterday’s forecast and today’s observations," Zhang said. "We sample the ways in which the previous day’s forecast deviated from what really happened, and we sample the wealth of data available to us from the present 12 hour period. Then we use statistics to get the best estimate of current initial conditions for the computer forecasting models, which predict tomorrow’s weather.

"Even given the problems of data sampling and uncertainty, new generation numerical weather prediction via computer simulations significantly outperforms human forecasters," he continued. "Now, innovative data assimilation techniques will not only take full advantage of current weather observations to make better daily weather forecasts, it will also provide guidance in designing next-generation weather observation networks."

Judith White | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>