Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers show why active mountains don’t get taller


Active mountain ranges like the Olympic Mountains, Taiwan Central Range or the Southern Alps are still growing, but they are not getting any taller. River cutting and erosion keep the heights and widths of uplifted mountain ranges in a steady state according to an international team of geoscientists.

"These mountains grew to 2.5 to 3 miles high over the past few million years and then they stopped increasing," says Dr. Rudy L. Slingerland, professor of geology and head of Penn State’s geosciences department. "We assumed that various erosional forces were compensating for the constant uplift of the mountains, but few observations have been available to validate this assumption."

Mountain ranges form near the border of two tectonic plates. When one plate slides beneath the other, or subducts, a veneer of rocks on the subducted plate is scraped off and piles up to form the mountains. Even though tectonic plates subduct for tens of millions of years, mountain ranges usually stay between 2.5 and 3 miles high and about 75 to 150 miles wide. This is because the slopes become steeper as the mountains grow in elevation and more material erodes away via landslides, river cutting and other forms of erosion. The higher and steeper the mountains, the greater the slope and the more material is transported away to the oceans.

"The process of river erosion redistributes the mass of the mountain and has significant influences on maintaining steady-state mountain heights and widths," says Slingerland.

Slingerland, working with N. Hovius, a former Penn State postdoctoral fellow now at Cambridge University; K. Hartshorn, graduate student; and W. B. Dade, research scientist, also at Cambridge University, looked at the LiWu River in the East Central Range of Taiwan.

The researchers monitored the site of the only water gauging station on the LiWu River. The station was established for a small, Japanese built, hydroelectric station 2.5 miles downstream. They report the results of nearly two years of monitoring in today’s (Sept. 20) issue of Science.

The LiWu River originates at 11,500 feet above sea level and drains an area of about 230 square miles of mostly quartzite and schist rocks. The researchers note that the area has a high rate of tectonic uplift, about 2 to 4 miles per million years and approximately 110 million tons of sediment move through the river each year. This is about a tenth of all the sediment that goes into the sea worldwide.

"We measured the elevation of the riverbed to plus or minus two one-hundredths of an inch," says Slingerland. "This really fine measurement allowed us to see how rapidly the water was eroding the riverbed."

The quartzite components of the riverbed eroded about a third of an inch over two wet seasons and the schist eroded a little under a quarter of an inch.

"It just so happened that the first season we were monitoring was quite dry, then in the second season there was a super typhoon, Supertyphoon Bilis," says Slingerland. "We found the wear rates differed between the two years."

During the typhoon year, there was some wear in the river bottom, but most of the wear was higher on the valley walls and in the corners, widening the river’s course. During the non-supertyphoon year, when rainfall was relatively frequent but of moderate intensity, wear occurred lower in the river valley.

"Looking at the numbers, even for only a few years, indicates that the down cutting rate fairly closely matches the rate at which rocks move up," says the Penn State researcher.

Knowing that the river cutting balances the continuous mountain up lifting answered the question of the rate of river cutting, but how that cutting takes place was another question the researchers investigated.

"While violent water discharge does pluck blocks of rocks from the riverbeds, it appears to be the abrasion by suspended particles that does most of the down cutting," says Slingerland. "It is like sandblasting a stone building. The tiny particles wear away the surface."

Andrea Elyse Messer | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>