Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Engineers Creating ’More Refined’ Global Climate Model

18.09.2002


Frustrated by the limitations of present numerical models that simulate how Earth’s climate will be altered by factors such as pollution and landscape modification, Duke University engineers are creating a new model incorporating previously-missing regional and local processes.



"The model we are developing is much more refined," said the project’s leader, Roni Avissar, chairman of the Department of Civil and Environmental Engineering at Duke’s Pratt School of Engineering.

Unlike previous designs now used by the world’s climatologists, Avissar said Duke’s model will have a "telescoping capability" to zoom in from global conditions to more localized ones in areas as small as parts of individual states like North Carolina.


The Duke design can thus, for example, model the far-reaching impacts of individual thunderstorms. "These local storms are not very big in size but are extremely powerful in affecting the global atmosphere," he said in an interview. "The current climate models have no capability to simulate those things."

Avissar (http://www.cee.duke.edu/faculty/avissar_r/index.html) currently heads a scientific steering group in charge of advising federal agencies such as the National Science Foundation and the National Oceanic and Atmospheric Administration about research shortcomings in the area of the "global water cycle."

The global water cycle is the term scientists use to describe how water gets distributed around the planet through a cycle of evaporation, transport and precipitation. Pound for pound, water vapor is a more powerful heat-trapping "greenhouse gas" than the carbon dioxide emitted by human activities, according to experts.

Avissar, previously the chairman of Rutgers University’s Department of Environmental Sciences, and founding director of Rutgers’ Center for Environmental Prediction, has done extensive studies on the roles of water and other environmental factors on climate in tropical forests such as the Amazon.

"From a global water point of view, that’s where the action is," he said of the tropics. "You modify the water cycle there, and it going to affect the entire planet."

In the tropics as well as in Earth’s more temperate zones, thunderstorms provide a key influence on water distribution and weather, Avissar said. For instance, the alteration of worldwide rainfall patterns observed during El Nino events are triggered by "an increase in thunderstorm activity as a result of an unusual sea-surface temperature warming in the Pacific," he said.

Yet thunderstorms are too small and localized to be included in current global climate models, which work on scales so large that an entire state is represented by just "one point" in huge worldwide grid, he noted.

By contrast, Duke’s new Ocean-Land-Atmosphere Model -- abbreviated OLAM -- works on multiple scales. "By using a numerical trick to modify the grid that we use to simulate the planet, we have the capability to go to a small grid to simulate those thunderstorms," he said. "And we can understand globally their impact much better.

"So it has this telescoping capability from one scale to the other, to represent the entire planet as well as have a focus on a given region. If you want to work regionally, you can. If you want to work globally, you can do that too. Or you can work with both of them simultaneously."

OLAM -- which also means "world" in the original language of the Old Testament, Avissar said -- was designed by Robert Walko, a master programmer and senior scientist at the Pratt School.

Both men were post-doctoral researchers at Colorado State University, where Walko designed and developed the Regional Atmospheric Modeling System, one of the most widely-used current models for regions the size of the Southwestern or Northeastern United States. They later worked together at Rutgers, and now at Duke.

Another key factor in OLAM’s development is a powerful "Beowulf Cluster" of computers -- a linked group of desktop computers that collectively can serve as a substitute for a mainframe supercomputer. That cluster is among several now working around the clock at the Pratt School and elsewhere at Duke.

While the OLAM project is mostly a product of the Pratt School’s civil and environmental engineering department, other research groups are also contributing to the model. For instance, a "vegetation dynamics" model developed by a group now at Harvard, which simulates the growth and senescence of vegetation communities and their interactions with soils, water and climate, will soon be merged with "the fluid dynamics components of the planetary model that we already have," he said.

The Pratt School project has also developed a partnership with ATMET, a small private Colorado company formed by Avissar, Walko and another researcher that does meteorological and climatological forecasting.

ATMET "is probably going to use this model for come commercial applications that are cannot be performed in a university environment," Avissar added. "Let’s say that you want to forecast how cold the next winter will be because that affects the coffee market."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>