Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Engineers Creating ’More Refined’ Global Climate Model

18.09.2002


Frustrated by the limitations of present numerical models that simulate how Earth’s climate will be altered by factors such as pollution and landscape modification, Duke University engineers are creating a new model incorporating previously-missing regional and local processes.



"The model we are developing is much more refined," said the project’s leader, Roni Avissar, chairman of the Department of Civil and Environmental Engineering at Duke’s Pratt School of Engineering.

Unlike previous designs now used by the world’s climatologists, Avissar said Duke’s model will have a "telescoping capability" to zoom in from global conditions to more localized ones in areas as small as parts of individual states like North Carolina.


The Duke design can thus, for example, model the far-reaching impacts of individual thunderstorms. "These local storms are not very big in size but are extremely powerful in affecting the global atmosphere," he said in an interview. "The current climate models have no capability to simulate those things."

Avissar (http://www.cee.duke.edu/faculty/avissar_r/index.html) currently heads a scientific steering group in charge of advising federal agencies such as the National Science Foundation and the National Oceanic and Atmospheric Administration about research shortcomings in the area of the "global water cycle."

The global water cycle is the term scientists use to describe how water gets distributed around the planet through a cycle of evaporation, transport and precipitation. Pound for pound, water vapor is a more powerful heat-trapping "greenhouse gas" than the carbon dioxide emitted by human activities, according to experts.

Avissar, previously the chairman of Rutgers University’s Department of Environmental Sciences, and founding director of Rutgers’ Center for Environmental Prediction, has done extensive studies on the roles of water and other environmental factors on climate in tropical forests such as the Amazon.

"From a global water point of view, that’s where the action is," he said of the tropics. "You modify the water cycle there, and it going to affect the entire planet."

In the tropics as well as in Earth’s more temperate zones, thunderstorms provide a key influence on water distribution and weather, Avissar said. For instance, the alteration of worldwide rainfall patterns observed during El Nino events are triggered by "an increase in thunderstorm activity as a result of an unusual sea-surface temperature warming in the Pacific," he said.

Yet thunderstorms are too small and localized to be included in current global climate models, which work on scales so large that an entire state is represented by just "one point" in huge worldwide grid, he noted.

By contrast, Duke’s new Ocean-Land-Atmosphere Model -- abbreviated OLAM -- works on multiple scales. "By using a numerical trick to modify the grid that we use to simulate the planet, we have the capability to go to a small grid to simulate those thunderstorms," he said. "And we can understand globally their impact much better.

"So it has this telescoping capability from one scale to the other, to represent the entire planet as well as have a focus on a given region. If you want to work regionally, you can. If you want to work globally, you can do that too. Or you can work with both of them simultaneously."

OLAM -- which also means "world" in the original language of the Old Testament, Avissar said -- was designed by Robert Walko, a master programmer and senior scientist at the Pratt School.

Both men were post-doctoral researchers at Colorado State University, where Walko designed and developed the Regional Atmospheric Modeling System, one of the most widely-used current models for regions the size of the Southwestern or Northeastern United States. They later worked together at Rutgers, and now at Duke.

Another key factor in OLAM’s development is a powerful "Beowulf Cluster" of computers -- a linked group of desktop computers that collectively can serve as a substitute for a mainframe supercomputer. That cluster is among several now working around the clock at the Pratt School and elsewhere at Duke.

While the OLAM project is mostly a product of the Pratt School’s civil and environmental engineering department, other research groups are also contributing to the model. For instance, a "vegetation dynamics" model developed by a group now at Harvard, which simulates the growth and senescence of vegetation communities and their interactions with soils, water and climate, will soon be merged with "the fluid dynamics components of the planetary model that we already have," he said.

The Pratt School project has also developed a partnership with ATMET, a small private Colorado company formed by Avissar, Walko and another researcher that does meteorological and climatological forecasting.

ATMET "is probably going to use this model for come commercial applications that are cannot be performed in a university environment," Avissar added. "Let’s say that you want to forecast how cold the next winter will be because that affects the coffee market."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>