Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'New' ancient Antarctic sediment reveals climate change history

Recent additions to the premier collection of Southern Ocean sediment cores at Florida State University’s Antarctic Marine Geology Research Facility will give international scientists a close-up look at fluctuations that occurred in Antarctica’s ice sheet and marine and terrestrial life as the climate cooled considerably between 20 and 14 million years ago.

FSU’s latest Antarctic sediment core acquisition was extracted from deep beneath the sea floor of Antarctica’s western Ross Sea, the Earth’s largest floating ice body. The new samples -- segments of a drill core that measures more than 1,100 meters in length -- offer an extraordinary stratigraphic record of sedimentary rock from the Antarctic continental margin that documents key developments in the area’s Cenozoic climatic and glacial history.

By correlating that stratigraphic record with existing data and climate and ice sheet models, scientists from FSU and around the world expect to learn how local changes in the Southern Ocean region relate to regional and global climate events.

“Such knowledge will significantly increase our understanding of Antarctica’s potential responses to future global-scale climate changes,” said Sherwood W. Wise, Jr., an FSU geological science professor and co-principal investigator at the Antarctic Marine Geology Research Facility. “This is critical for low-lying regions such as Florida that could be directly affected by the future behavior of the Antarctic Ice Sheets and any resulting sea-level changes. By studying these glacial records of the past, geologists and climatologists seek to better predict the future.”

The new cores came to FSU compliments of ANDRILL (ANtarctic geological DRILLing), an international collaboration among more than 120 scientists -- plus drillers, engineers, educators and technicians -- from Germany, Italy, New Zealand and the United States. FSU’s Antarctic Marine Geology Research Facility and its staff and associated geological science faculty play a key ANDRILL role, providing both on-the-ice curatorial services during the drilling season and a permanent repository for the core samples recovered during the project.

In fact, from April 29 through May 3, some 100 ANDRILL scientists and educators, including seven from the FSU “on-ice” curatorial team, will converge at the Antarctic Marine Geology Research Facility core repository. They will re-examine the latest core acquisitions to refine their descriptions of the material and take additional samples for tests to extract even more information about their history and the conditions under which the sediments were deposited.

Those hard-won, deep-sea sediment cores may be millions of years old, but the scientists will find them in mint condition at FSU. The Antarctic research facility carefully curates the samples in its large, 6,000-square-foot refrigerated “Cold Room,” which is maintained at 34 F. (i.e., sea-bottom temperatures).

“The sediment cores recovered during this year’s successful ANDRILL expedition have filled in a major gap in the most direct record of the ice activity yet recovered from the period of about 20 to 14 million years ago,” said Wise, who serves ANDRILL as a participating (off-ice) scientist and member of its U.S. advisory committee. “The 1,139 meters of core retrieved, 98 percent intact, records the critical transition from times warmer than today to the onset of major cooling between about 14 to 13 million years ago when a semi-permanent ice sheet formed across most of Antarctica.”

That record was created, said Wise, because sediments deposited close to or beneath grounded glaciers alternate with marine sediments, providing clear evidence of cyclical ice advances followed by substantial retreats and reflecting variations in sea-level, glacial and climate fluctuations. The new stratigraphic section housed at FSU will allow scientists to devise more accurate models of the timing of past ice-sheet movements, volume changes and variability, and paleotemperature fluctuations, and will enable a better understanding of the development of Antarctica’s terrestrial and marine life.

The Antarctic Marine Geology Research Facility was established at FSU in 1963 through the National Science Foundation’s Office of Polar Programs and now serves as the national repository for geological material from the Southern ocean. It functions as one of the university’s two user facilities (the National High Magnetic Field Laboratory is the other) for visiting researchers from around the globe.

ANDRILL’s meeting April 29-May 3 will take place throughout FSU’s Carraway Building -- home to the Department of Geological Sciences and the annex that houses the Antarctic Marine Geology Research Facility. During the workshop one of the two chief scientists of the second ANDRILL expedition, David M. Harwood, an FSU master’s graduate (1982) and a geology professor at the University of Nebraska-Lincoln, will be honored with a special alumni award.

Visiting ANDRILL researchers who attended last May’s inaugural post-drilling workshop at FSU will notice that since then the Antarctic research facility’s core repository has undergone a major renovation to make room for recent acquisitions and future ones. Funding for those improvements to one of the coolest places on campus came from the National Science Foundation.

Sherwood W. Wise, Jr. | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>