Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover 356 animal inclusions trapped in 100 million years old opaque amber

Paleontologists from the University of Rennes (France) and the ESRF have found the presence of 356 animal inclusions in completely opaque amber from mid-Cretaceous sites of Charentes (France).
The team used the X-rays of the European light source to image two kilogrammes of the fossil tree resin with a technique that allows rapid survey of large amounts of opaque amber. At present this is the only way to discover inclusions in fully opaque amber.

Opaque amber has always been a challenge for paleontologists. Researchers cannot study it because the naked eye cannot visualize the presence of any fossil inclusion inside. In the Cretaceous sites like those in Charentes, there is up to 80% of opaque amber. It is like trying to find, in complete blindness, something that may or may not be there.

However, the paleontologists Malvina Lak, her colleagues from the University of Rennes and the ESRF paleontologist Paul Tafforeau, together with the National Museum of Natural History of Paris, have applied to opaque amber a synchrotron X-ray imaging technique known as propagation phase contrast microradiography. It sheds light on the interior of this dark amber, which resembles a stone to the human eye. “Researchers have tried to study this kind of amber for many years with little or no success. This is the first time that we can actually discover and study the fossils it contains”, says Paul Tafforeau.

The scientists imaged 640 pieces of amber from the Charentes region in southwestern France. They discovered 356 fossil animals, going from wasps and flies, to ants or even spiders and acarians. The team was able to identify the family of 53% of the inclusions.

Most of the organisms discovered are tiny. For example, one of the discovered acarians measures 0.8 mm and a fossil wasp is only 4 mm. “The small size of the organisms is probably due to the fact that bigger animals would be able to escape from the resin before getting stuck, whereas little ones would be captured more easily”, explains Malvina Lak.

Water to see tiny fossils better

The surface features of amber pieces, like cracks, stand out more in the images than the fossil organisms in the interior when using synchrotron radiation. In order to solve this problem, scientists soaked the amber pieces in water before the experiment. Because water and amber have very similar densities, immersion made the outlines of the amber pieces and the cracks almost invisible. At the same time, it increased overall inclusion visibility, leading to better detection and characterization of the fossils.

Classification of species

Once discovered on the radiographs, some of the organisms were imaged in three dimensions and virtually extracted from the resin. The high quality of these 3D reconstructions enables paleontologists to precisely study and describe the organisms. The success of this experiment shows the high value of the ESRF for the study of fossils. “Opaque amber hosts many aspects of past life on our planet that are still unknown, and the use of third generation synchrotron sources will continue to play an important role in unveiling them”, asserts Malvina Lak.


M. Lak, D. Néraudeau, A. Nel, P. Cloetens, V. Perrichot and P. Tafforeau, Phase Contrast X-ray Synchrotron Imaging: Opening Access to Fossil Inclusions in Opaque Amber, Microscopy and Microanalysis, Forthcoming article doi:10.1017/S1431927608080264.

Montserrat Capellas | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>