Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underwater landslides: 100 km/h

31.03.2008
Deposit landslides move much faster in water than in air. Even in places where the sea bed is as flat as a pancake, the underwater landslides can accumulate a speed of over 100 kilometres an hour.

Tekst: Yngve Vogt, Translated by: Kathrine Torday Gulden

Surprisingly sand and clay landslides can move at a much higher speed under water than above. Landslides can cross ocean floors with a tremendous speed and move several hundred kilometres in more than a hundred kilometres per hour.

"The speed of the landslides can be compared to the airport express in Oslo and the landslides “float” almost without any contact with the sea bed", says Professor Anders Elverhøi from the Department of Geosciences at the University of Oslo to the research magazine Apollon.

He has spent the last ten years studying underwater landslides.

His interest in underwater landslides began already at the end of the eighties, when the oil industry needed knowledge in regard to where they could place installations on the sea bed without there being a risk of them being ruined by landslides.

Ancient landslides

The oil industry has the last years begun the search for oil in the continental slope which ties together the continental shelf and the deep sea. Huge landslides have been observed in this area.

One example of this is the gas field at Ormen Lange, where the Storegga Landslide occurred approximately 8200 years ago. The landslide resulted in a 10-15 metre tidal wave which lead to the ruin of a Stone Age settlement on the west coast of Norway.

After the Ice Age a similar landslide occurred just outside Bjørnøya. The landslide moved 100 to 200 kilometres across the sea bed, even though the angle of inclination was only between a half and one degree steep, this being no steeper than Denmark.

Landslides in modern times

The most notorious landslide in modern time occurred outside Newfoundland in Canada in 1929. Cables on the sea bed were demolished. When researchers studied the damages they were able to establish that the landslide of one thousand cubic kilometres had moved at a speed of 60 to 100 kilometres an hour.

A thousand cubic kilometres is such a large amount that it could have covered Norway with more than three metres of deposit. The large landslides outside the coast of Norway were even bigger.

Paradoxes

Underwater landslides are paradoxical in two ways.

"One paradox is how such huge amounts of deposit can move at such great speed. The other paradox is that the landslides travel across great distances even if the angle of inclination is slight", says Anders Elverhøi.

To be able to reveal the secrets concerning underwater landslides, Elverhøi and Dr. Carl Harbitz at the International Centre for Geohazards have worked together with American researchers at a laboratory in St. Anthony Falls in USA. The researchers have imitated a landslide in a small tank with a six degree angle of inclination. Advanced high speed cameras have documented the experiment by taking 250 video images per second.

The fundamental physical nature of the landslide has been researched, more specifically how the particles distribute and have an impact on each other.

The results of this experiment have been used to create a mathematical model of large landslides at sea.

Hydroplaning

Deposit landslides travel further in water than in air.

On one of the videos the landslide is similar to a train with its nose pointing upwards. The speed is as intense the entire time.

Due to the pressure which commences in front of the landslide, the landslide points upwards and moves above a thin layer of water, hardly in contact with the sea bed. The phenomenon is called hydroplaning and causes less resistance. This is especially apparent in regard to landslides with a high content of marine clay, such was the case in the notorious Storegga Landslide outside the west coast of Norway.

Stretches into two

Thanks to the experiments at the American laboratory, Anders Elverhøi has calculated that the front part of the Storegga Landslide travelled at three to four times the speed than the behind part.

- When a landslide stretches, the mass is distributed over long distances. This can be compared to a dispersing car queue. The cars in front race forward, while the queue still clutters together behind.

During the stretch, water is mixed into the landslide. This causes less “resistance within” the landslide which results in the landslide moving at a higher speed.

– The combination of hydroplaning up front, that the landslide stretches and that water mixes in to the landslide, has to do with the speed and distance the landslide travels. This also results in the underwater landslide meeting a smaller collected resistance than a landslide would in air. We had not foreseen these results.

In certain cases there is such a large stretch in the landslide that the front of the landslide escapes the back end of the landslide. In these cases the landslide is divided into two.

”X-ray vision"

As of today pictures are only taken of the landslide’s surface.

– We are not sure that the surface of the landslide represents what is actually happening inside the landslide. To be certain of this we feel it is necessary to do research on the particle movement within the landslide.

This is the next step for their research project.

"We can learn more about safety in regard to underwater installations once we understand which mechanisms lead sand and clay to deep water. This understanding is also important to learn what sort of connection there is between landslides and tsunamis and what creates the basis for the oil reservoirs on the continental slope. This isn’t only interesting for Norway, but also for oil searches in other deep sea areas, such as on the outskirts of Nigeria, Angola and Brasil", Anders Elverhøi says.

Anders Elverhøi | alfa
Further information:
http://www.apollon.uio.no/vis/art/2008_1/Artikler/skred_english

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>