Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists uncover the source of an almost two billion year delay in animal evolution

A deficiency of oxygen and the heavy metal molybdenum in the ancient deep ocean may have delayed the evolution of animal life on Earth for nearly two billion years.

Dr Simon Poulton, Civil Engineering and Geosciences, Newcastle University, was part of an international team of biogeochemists who took part in the University of California-led study.

The study’s results are published in today’s edition of Nature (27th March).

‘For decades it was assumed that the ocean became oxygenated shortly after an initial rise in atmospheric oxygen about 2.4 billion years ago,’ said Dr Poulton. ‘This study provides independent confirmation that there was a major delay in the oxygenation of the ocean, and furthermore, it now appears that the availability of molybdenum may have played a crucial role in animal evolution.

‘At last, a coherent picture of the environmental conditions that led to the evolution of animal life is emerging.’

The researchers arrived at their conclusion after tracking molybdenum in black shales, a kind of sedimentary rock rich in organic matter found in the ocean. Molybdenum is a key micronutrient for the life-forms that control the production of oceanic and atmospheric oxygen.

Following the initial rise of oxygen in the Earth’s atmosphere 2.4 billion years ago, oxygen was transferred to the surface ocean to support oxygen-demanding micro-organisms. However, the diversity of these single-celled life forms remained low, and their multi-cellular descendents (animals) did not appear until about 600 million years ago.

Suspecting that deficiencies in oxygen and molybdenum might explain this evolutionary lag, the team measured the abundance of molybdenum in ancient marine sediments over time to estimate how much of the metal had been dissolved in the seawater in which the sediments formed.

The researchers found significant, firsthand evidence for a molybdenum-depleted ocean compared to the high levels measured in today’s oxygen-rich seawater.

‘These molybdenum depletions may have retarded the development of complex life such as animals for almost two billion years of Earth’s history,’ said project leader Professor Timothy Lyons, at the University of California’s Department of Earth Sciences. ‘The amount of molybdenum in the ocean probably played a major role in the development of early life.

‘As in the case of iron today, molybdenum can be thought of as a life-affirming micro-nutrient that regulates the biological cycling of nitrogen in the ocean.

‘At the same time, molybdenum’s low abundance in the early ocean highlights the global extent of oxygen-poor seawater and implies that the amount of oxygen in the atmosphere was still low.

‘Knowing the amount of oxygen in the early ocean is important for many reasons, including a refined understanding of how and when appreciable oxygen first began to accumulate in the atmosphere.

‘These steps in oxygenation are what ultimately gave rise to the first animals almost 600 million years ago – just the last tenth or so of Earth’s history.’

For animal life to commence, survive and eventually expand on Earth, a threshold amount of oxygen – estimated to be on the order of 1 to 10 percent of present atmospheric levels of oxygen – was needed.

Past research has shown that Earth’s oxygenation occurred in two major steps: The first step, around 2.4 billion years ago, took place as the ocean transformed to a state where only the surface ocean was oxygenated by photosynthesizing bacteria, while the deep ocean was relatively oxygen-free.

The second step, around 600 million years ago, marked the point when the entire ocean became fully oxygenated through a process not yet fully understood. The purpose of this research was to find out the state of the ocean between the two steps.

By tracking molybdenum in shales rich in organic matter, researchers found the deep ocean remained oxygen and molybdenum-deficient after the first step. This condition may have had a negative impact on the evolution of early eukaryotes, our single-celled ancestors. The molybdenum record also shows that the deep ocean only became fully oxygenated by around 550 million years ago.

According to this research, the timing of the oxygenation steps suggests that significant events in Earth’s history are related. Scientists have long speculated that the evolution of the first animals was somehow linked to the so-called Snowball Earth hypothesis, where the Earth was covered from pole to pole in a thick sheet of ice for millions of years. Oxygenation of the oceans and the evolution of animal life occurred shortly after the last of Earth’s global glaciations.

Michael Warwicker | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>