Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers confirm discovery of Earth's inner, innermost core

12.03.2008
Geologists at the University of Illinois have confirmed the discovery of Earth’s inner, innermost core, and have created a three-dimensional model that describes the seismic anisotropy and texturing of iron crystals within the inner core.

“For many years, we have been like blind men touching different parts of an elephant,” said U. of I. geologist Xiaodong Song. “Now, for the fist time, we have a sense of the entire elephant, and see what the inner core of Earth really looks like.”

Using both newly acquired data and legacy data collected around the world, Song and postdoctoral research associate Xinlei Sun painstakingly probed the shape of Earth’s core. The researchers report their findings in a paper accepted for publication in the journal Earth and Planetary Science Letters, and posted on its Web site.

Composed mainly of iron, Earth’s core consists of a solid inner core about 2,400 kilometers in diameter and a fluid outer core about 7,000 kilometers in diameter. The inner core plays an important role in the geodynamo that generates Earth’s magnetic field.

The solid inner core is elastically anisotropic; that is, seismic waves have different speeds along different directions. The anisotropy has been found to change with hemisphere and with radius. In the latest work, Sun and Song describe another anomaly – a global structure – found within the inner core.

“To constrain the shape of the inner core anisotropy, we needed a uniform distribution of seismic waves traveling in all directions through the core,” Sun said. “Since the seismic waves we studied were generated by earthquakes, one challenge was acquiring enough seismic waves recorded at enough stations.”

In their analysis, Sun and Song used a three-dimensional tomography technique to invert the anisotropy of the inner core. They parameterized the anisotropy of the inner core in both radial and longitudinal directions. The researchers then used a three-dimensional ray tracing method to trace and retrace the seismic waves through the inner core iteratively.

What they found was a distinct change in the inner core anisotropy, clearly marking the presence of an inner inner core with a diameter of about 1,180 kilometers, slightly less than half the diameter of the inner core.

The layering of the core is interpreted as different texturing, or crystalline phase, of iron in the inner core, the researchers say.

“Our results suggest the outer inner core is composed of iron crystals of a single phase with different degrees of preferred alignment along Earth’s spin axis,” Sun said. “The inner inner core may be composed of a different phase of crystalline iron or have a different pattern of alignment.”

Although the anisotropy of the inner core was proposed 20 years ago, “this is the first time we have been able to piece everything together to create a three-dimensional view,” Song said. “This view should help us better understand the character, mineral properties and evolution of Earth’s inner core.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>