Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers confirm discovery of Earth's inner, innermost core

12.03.2008
Geologists at the University of Illinois have confirmed the discovery of Earth’s inner, innermost core, and have created a three-dimensional model that describes the seismic anisotropy and texturing of iron crystals within the inner core.

“For many years, we have been like blind men touching different parts of an elephant,” said U. of I. geologist Xiaodong Song. “Now, for the fist time, we have a sense of the entire elephant, and see what the inner core of Earth really looks like.”

Using both newly acquired data and legacy data collected around the world, Song and postdoctoral research associate Xinlei Sun painstakingly probed the shape of Earth’s core. The researchers report their findings in a paper accepted for publication in the journal Earth and Planetary Science Letters, and posted on its Web site.

Composed mainly of iron, Earth’s core consists of a solid inner core about 2,400 kilometers in diameter and a fluid outer core about 7,000 kilometers in diameter. The inner core plays an important role in the geodynamo that generates Earth’s magnetic field.

The solid inner core is elastically anisotropic; that is, seismic waves have different speeds along different directions. The anisotropy has been found to change with hemisphere and with radius. In the latest work, Sun and Song describe another anomaly – a global structure – found within the inner core.

“To constrain the shape of the inner core anisotropy, we needed a uniform distribution of seismic waves traveling in all directions through the core,” Sun said. “Since the seismic waves we studied were generated by earthquakes, one challenge was acquiring enough seismic waves recorded at enough stations.”

In their analysis, Sun and Song used a three-dimensional tomography technique to invert the anisotropy of the inner core. They parameterized the anisotropy of the inner core in both radial and longitudinal directions. The researchers then used a three-dimensional ray tracing method to trace and retrace the seismic waves through the inner core iteratively.

What they found was a distinct change in the inner core anisotropy, clearly marking the presence of an inner inner core with a diameter of about 1,180 kilometers, slightly less than half the diameter of the inner core.

The layering of the core is interpreted as different texturing, or crystalline phase, of iron in the inner core, the researchers say.

“Our results suggest the outer inner core is composed of iron crystals of a single phase with different degrees of preferred alignment along Earth’s spin axis,” Sun said. “The inner inner core may be composed of a different phase of crystalline iron or have a different pattern of alignment.”

Although the anisotropy of the inner core was proposed 20 years ago, “this is the first time we have been able to piece everything together to create a three-dimensional view,” Song said. “This view should help us better understand the character, mineral properties and evolution of Earth’s inner core.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>