Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Alaska glacier speed-up tied to internal plumbing issues

Meltwater clogging and speeding of Kennicott Glacier may help explain behavior and acceleration of glaciers in Greenland, say researchers

A University of Colorado at Boulder study indicates meltwater periodically overwhelms the interior drainpipes of Alaska's Kennicott Glacier and causes it to lurch forward, similar to processes that may help explain the acceleration of glaciers observed recently on the Greenland ice sheet that are contributing to global sea rise.

According to CU-Boulder Professor Robert Anderson of the Institute of Arctic and Alpine Research, the amount of water passing through conduits inside and underneath the Kennicott Glacier increases during seasonal melting and also following annual flooding from a nearby lake. The addition of excess water from melting and flooding causes water to back up into a honeycomb of passages inside the glacier, he said, suggesting the resulting increase in water pressure causes the glacier to slide more rapidly down its bedrock valley.

"The phenomenon is similar to the plumbing system of a house that is incapable of handling excess water or waste, causing it to back up," said Anderson. "This is a feedback we are still trying to understand and one that has big implications for understanding the dynamics of glaciers and ice sheets, including the behavior of outlet glaciers on the Greenland ice sheet."

A paper on the subject appears in the January edition of the new monthly scientific journal, Nature Geoscience. The study was authored by former CU-Boulder graduate student Timothy Bartholomaus, Robert Anderson, and INSTAAR's Suzanne Anderson. Robert Anderson is a faculty member in the CU-Boulder geological sciences department and Suzanne Anderson is a faculty member the geography department.

The sliding eventually halts when the moving glacier opens up spaces in its bed that can accommodate some of the excess water, helping to relieve the water pressure, the authors said. In addition, high rates of water flow eventually enlarge the conduits and ducts permeating the glacier, "melting them back and allowing more water to bleed from the system, further decreasing the pressure," said Robert Anderson.

The Kennicott Glacier roughly doubled its normal 1-to-2 feet of movement per day during the 2006 sliding episodes tied to water pressure, said Anderson. When the glacier responded to a 2006 "outburst" flood -- when water from Hidden Creek Lake adjacent to the glacier rushed into the sub-glacial tunnel system and released an estimated 10 billion gallons of water under the glacier -- the pace ramped up to nearly 9 feet a day for the duration of the two-day period.

The team used GPS receivers positioned on the glacier as well as pressure gauges, temperature sensors, sonic distance measuring sensors and electrical conductivity probes. The conductivity levels in the water draining out of the glacier rose after backpressure in the glacier dissipated and expelled water high in chloride ions abundant in the salty bedrock beneath the ice, said co-author Suzanne Anderson.

"Nature essentially provided us with an extra probe to determine these sub-glacial processes, and ultimately provided an additional avenue of support for our model of how this system works," said Robert Anderson. The National Science Foundation funded the research.

An awareness of such glacial dynamics is important information for glaciologists studying the Greenland ice sheet, which is undergoing record surface melt and the subsequent drainage of large volumes of water through the ice sheet and associated outlet glaciers, the researchers said. Some of Greenland's outlet glaciers have sped up from 50 percent to 100 percent during the annual melt season and discharged substantially more ice into the seas, according to recent research led by CU-Boulder glaciologist Konrad Steffen.

"There are a number of catastrophic draining events of slush ponds on the Greenland ice sheet that may well promote increased sliding of the ice sheet as this water is jammed into a sub-glacial pipe system that is ill-prepared for such inputs," Robert Anderson said. "This phenomenon is also relevant to small glaciers around the world, because it may help to explain their nonsteady rates of sliding.

"People are becoming increasingly aware that sea-level rise is a very real problem," he said. "As scientists, we need to acknowledge the role of all of the world's ice masses and to understand the physical mechanisms by which they deliver water to the sea."

Robert Anderson | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>