Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How some plants and animals appear to defy the ageing process

16.01.2008
The inevitability of the ageing process and the onset of senescence - the process of deterioration with age - is a fact of life for most plant and animal species.

Some, however, live to extreme ages, such as the English yew, of which at least one alive today is recorded in the Domesday Book; while a few organisms seem to defy current evolutionary understanding altogether, by appearing to have indefinite generation lengths with negligible senescence. For example, the Rocky Mountain Bristlecone Pine is known to produce viable cones at over 4000 years of age.

New research by ecologist Dr Patrick Doncaster from the University of Southampton, and mathematician Professor Robert Seymour from University College London demonstrates the principle by which some organisms can indefinitely postpone the onset of senescent ageing.

'Our analysis indicates that sedentary organisms, including some types of tree, are particularly likely to achieve this postponement of the onset of senescent ageing,' comments Dr Doncaster. 'It evolves through many generations of ancestors "crowding out" young individuals of the same species that attempt to grow to adulthood alongside them.'

He continues: 'The inevitability of senescence amongst organisms with repeated reproduction has well-developed theoretical foundations. In essence, since reproduction carries physiological costs, natural selection favours reaping early benefits, and delaying the cost in physiological decline until later in life when there is a greater chance of being dead anyway from environmental hazards.

'But some organisms show negligible senescence and a few, such as Hydra, which is a very simple freshwater animal, and the Bristlecone Pine, appear to have indefinite generation lengths. We have now answered the question of how they could have evolved from ancestors with senescent life histories. Mathematical analysis shows that the crowding out of young individuals favours selection on ever-reducing senescence. Our computer simulations indicate that this runaway process could even lead

to immortality.'

The research paper 'Density Dependence Triggers Runaway Selection of Reduced Senescence' is published in PLoS Computational Biology, the official journal of the International Society for Computational Biology.

Sarah Watts | alfa
Further information:
http://compbiol.plosjournals.org/
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>