Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Older Arctic sea ice replaced by young, thin ice

A new study by University of Colorado at Boulder researchers indicates older, multi-year sea ice in the Arctic is giving way to younger, thinner ice, making it more susceptible to record summer sea-ice lows like the one that occurred in 2007.

The team used satellite data going back to 1982 to reconstruct past Arctic sea ice conditions, concluding there has been a nearly complete loss of the oldest, thickest ice and that 58 percent of the remaining perennial ice is thin and only 2-to-3 years old, said the lead study author, Research Professor James Maslanik of CU-Boulder's Colorado Center for Astrodynamics Research.

In the mid-1980s, only 35 percent of the sea ice was that young and that thin according to the study, the first to quantify the magnitude of the Arctic sea ice retreat using data on the age of the ice and its thickness, he said.

"This thinner, younger ice makes the Arctic much more susceptible to rapid melt," Maslanik said. "Our concern is that if the Arctic continues to get kicked hard enough toward one physical state, it becomes increasingly difficult to reestablish the sea ice conditions of 20 or 30 years ago."

A September 2007 study by CU-Boulder's National Snow and Ice Data Center indicated last year's average sea ice extent minimum was the lowest on record, shattering the previous September 2005 record by 23 percent. The minimum extent was lower than the previous record by about 1 million square miles -- an area about the size of Alaska and Texas combined.

The new study by Maslanik and his colleagues appears in the Jan. 10 issue of Geophysical Research Letters. Co-authors include CCAR's Charles Fowler, Sheldon Drobot and William Emery, as well as Julienne Stroeve from CU-Boulder's Cooperative Institute for Research in Environmental Sciences and Jay Zwally and Donghui Yi from NASA's Goddard Space Flight Center in Greenbelt, Md.

The portion of ice more than five years old within the multi-year Arctic icepack decreased from 31 percent in 1988 to 10 percent in 2007, according to the study. Ice 7 years or older, which made up 21 percent of the multi-year Arctic ice cover in 1988, made up only 5 percent in 2007, the research team reported.

The researchers used passive microwave, visible infrared radar and laser altimeter satellite data from the National Oceanic and Atmospheric Administration, NASA and the U.S. Department of Defense, as well as ocean buoys to measure and track sections of sea ice.

The team developed "signatures" of individual ice sections roughly 15 miles square using their thickness, roughness, snow depth and ridge characteristics, tracking them over the seasons and years as they moved around the Arctic via winds and currents, Emery said. "We followed the ice in sequential images and track it back to where it had been previously, which allowed us to infer the relative ages of the ice sections."

The replacement of older, thicker Arctic ice by younger, thinner ice, combined with the effects of warming, unusual atmospheric circulation patterns and increased melting from solar radiation absorbed by open waters in 2007 all have contributed to the phenomenon, said Drobot. "These conditions are setting the Arctic up for additional, significant melting because of the positive feedback loop that plays back on itself."

"Taken together, these changes suggest that the Arctic Ocean is approaching a point where a return to pre-1990s ice conditions becomes increasingly difficult and where large, abrupt changes in summer ice cover as in 2007 may become the norm," the research team wrote in Geophysical Research Letters.

James Maslanik | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>