Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid Sierra Nevada uplift tracked by scientists at the University of Nevada, Reno

04.05.2012
Nevada Geodetic Lab uses GPS and radar for most precise measurements over entire mountain range

From the highest peak in the continental United States, Mt. Whitney at 14,000 feet in elevation, to the 10,000-foot-peaks near Lake Tahoe, scientific evidence from the University of Nevada, Reno shows the entire Sierra Nevada mountain range is rising at the relatively fast rate of 1 to 2 millimeters every year.

"The exciting thing is we can watch the range growing in real time," University of Nevada, Reno's Bill Hammond, lead researcher on the multi-year project to track the rising range, said. "Using data back to before 2000 we can see it with accuracy better than 1 millimeter per year. Perhaps even more amazing is that these miniscule changes are measured using satellites in space."

Miniscule as they may be, the data indicate that long-term trends in crustal uplift suggest the modern Sierra could be formed in less than 3 million years, which is relatively quick when compared to estimates using some geological techniques.

Hammond and his colleagues in the University's Nevada Geodetic Laboratory and University of Glasgow use satellite-based GPS data and InSAR (space-based radar) data to calculate the movements to this unprecedented accuracy. The calculations show that the crust moves upward compared to Earth's center of mass and compared to relatively stable eastern Nevada.

The data may help resolve an active debate regarding the age of the modern Sierra Nevada of California and Nevada in the western United States. The history of elevation is complex, exhibiting features of both ancient (40 million years) and relatively young (less than 3 million years) elevation. The "young" elevation is the uplift Hammond and colleagues have tracked.

"The Sierra Nevada uplift process is fairly unique on Earth and not well understood." Hammond said. "Our data indicate that uplift is distributed along the entire length of the 400-mile-long range, between 35 and 40 degrees north latitude, that it is active, and could have generated the entire range is less than 3 million years, which is young compared to estimates based on some other techniques. It basically means that the latest pulse of uplift is still ongoing."

Possibly contributing to the rapid uplift is the tectonic extension in Nevada and a response to flow in the mantle. Seismologists indicate the mountain range may have risen when a fragment of lower plate peeled off the bottom of the lithosphere allowing the "speedy" uplift, like a ship that has lost its keel. In comparison, other ranges, such as the Alps or Andes, are being formed in an entirely different process caused by contraction as two plates collide.

"We've integrated GPS and InSAR measurement techniques, drawing from experience we developed in the past five years in our work with tectonic deformation, to see how the Sierra is gradually being pushed upwards," Hammond said. "Combined with more GPS stations, and more radar data, detecting motions in the Earth is becoming more precise and ubiquitous. We can see the steady and constant motion of the Sierra in addition to episodic events such as earthquakes."

Hammond's team includes Geoff Blewitt, Hans-Peter Plag and Corné Kreemer from the University of Nevada, Reno's College of Science and Zhenhong Li of the Centre for the Observation and Modeling of Earthquakes, Volcanoes and Tectonics, School of Geographical and Earth Sciences, University of Glasgow in the UK.

GPS data for Hammond and his team's research is collected through the team's MAGNET GPS Network based at the University of Nevada, Reno plus more than 1200 stations from the NSF EarthScope Plate Boundary Observatory and more than 10,000 stations from around the entire planet. These stations include hundreds that cover Nevada, California, Oregon, and Washington. The space-based radar data comes from the European Space Agency with support from NASA.

This research was funded in the United States by the National Science Foundation and NASA and in the United Kingdom by the Natural Environment Research Council.

Their paper, "Contemporary Uplift of the Sierra Nevada, western United States, from GPS and InSAR Measurements" will be published in the peer-reviewed journal Geology in July and has just been made available online.

For more information on Hammond, go to http://www.nbmg.unr.edu/Staff/Hammond.html. For the Nevada Geodetic Laboratory go to http://geodesy.unr.edu.

The University of Nevada, Reno has the largest GPS data-processing center in the world, which processes information from about 10,000 stations around the globe continuously, 24/7. The Nevada Geodetic Laboratory has all publicly available GPS data going back to 1996 and reprocesses all 15-million data files as new data streams come in – every 30 seconds – solving for tens of thousands of parameters at once. It enables real-time positioning for any users. People around the world use it extensively for research such as modeling earthquakes and volcanoes. The information is freely available to anyone on the Internet.

Nevada's land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of 18,000 students and is ranked in the top tier of the nation's best universities. Part of the Nevada System of Higher Education, the University has the system's largest research program and is home to the state's medical school. With outreach and education programs in all Nevada counties and with one of the nation's largest study-abroad consortiums, the University extends across the state and around the world.

Mike Wolterbeek | EurekAlert!
Further information:
http://www.unr.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>