Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum mechanics reveals new details of deep earth

11.05.2010
Scientists have used quantum mechanics to reveal that the most common mineral on Earth is relatively uncommon deep within the planet.

Using several of the largest supercomputers in the nation, a team of physicists led by Ohio State University has been able to simulate the behavior of silica in a high-temperature, high-pressure form that is particularly difficult to study firsthand in the lab.

The resulting discovery -- reported in this week’s early online edition of the Proceedings of the National Academy of Sciences (PNAS) -- could eventually benefit science and industry alike.

Silica makes up two-thirds of the Earth’s crust, and we use it to form products ranging from glass and ceramics to computer chips and fiber optic cables.

“Silica is all around us," said Ohio State doctoral student Kevin Driver, who led this project for his doctoral thesis. “But we still don’t understand everything about it. A better understanding of silica on a quantum-mechanical level would be useful to earth science, and potentially to industry as well.”

Silica takes many different forms at different temperatures and pressures -- not all of which are easy to study, Driver said.

"As you might imagine, experiments performed at pressures near those of Earth’s core can be very challenging. By using highly accurate quantum mechanical simulations, we can offer reliable insight that goes beyond the scope of the laboratory.”

Over the past century, seismology and high-pressure laboratory experiments have revealed a great deal about the general structure and composition of the earth. For example, such work has shown that the planet’s interior structure exists in three layers called the crust, mantle, and core. The outer two layers -- the mantle and the crust -- are largely made up of silicates, minerals containing silicon and oxygen.

Still, the detailed structure and composition of the deepest parts of the mantle remain unclear. These details are important for geodynamical modeling, which may one day predict complex geological processes such as earthquakes and volcanic eruptions.

Even the role that the simplest silicate -- silica -- plays in Earth's mantle is not well understood.

“Say you’re standing on a beach, looking out over the ocean. The sand under your feet is made of quartz, a form of silica containing one silicon atom surrounded by four oxygen atoms. But in millions of years, as the oceanic plate below becomes subducted and sinks beneath the Earth’s crust, the structure of the silica changes dramatically,” Driver said.

As pressure increases with depth, the silica molecules crowd closer together, and the silicon atoms start coming into contact with oxygen atoms from neighboring molecules. Several structural transitions occur, with low-pressure forms surrounded by four oxygen atoms and higher-pressure forms surrounded by six. With even more pressure, the structure collapses into a very dense form of the mineral, which scientists call alpha-lead oxide.

It’s this form of silica that likely resides deep within the earth, in the lower part of the mantle, just above the planet’s core, Driver said.

When scientists try to interpret seismic signals from that depth, they have no direct way of knowing what form of silica they are dealing with. So they must simulate the behavior of different forms on computer, and then compare the results to the seismic data. The simulations rely on quantum mechanics.

In PNAS, Driver, his advisor John Wilkins, and their coauthors describe how they used a quantum mechanical method to design computer algorithms that would simulate the silica structures. When they did, they found that the behavior of the dense, alpha-lead oxide form of silica did not match up with any global seismic signal detected in the lower mantle.

This result indicates that the lower mantle is relatively devoid of silica, except perhaps in localized areas where oceanic plates have subducted, Driver explained.

Wilkins, Ohio Eminent Scholar and professor of physics at Ohio State, cited Driver’s determination and resourcefulness in making this study happen. The physicists used a method called quantum Monte Carlo (QMC), which was developed during atomic bomb research in World War II. To earn his doctorate, Driver worked to show that the method could be applied to studying minerals in the planet’s deep interior.

"This work demonstrates both the superb contributions a single graduate student can make, and that the quantum Monte Carlo method can compute nearly every property of a mineral over a wide range of pressure and temperatures,” Wilkins said. He added that the study will “stimulate a broader use of quantum Monte Carlo worldwide to address vital problems.”

While these algorithms have been around for over half a century, applying them to silica was impossible until recently, Driver said. The calculations were simply too labor-intensive.

Even today, with the advent of more powerful supercomputers and fast algorithms that require less computer memory, the calculations still required using a number of the largest supercomputers in the United States, including the Ohio Supercomputer Center in Columbus.

“We used the equivalent of six million CPU hours or more, to model four different states of silica” Driver said.

He and his colleagues expect that quantum Monte Carlo will be used more often in materials science in the future, as the next generation of computers goes online.

Coauthors on the paper included Ronald Cohen of the Carnegie Institution of Washington; Zhigang Wu of the Colorado School of Mines; Burkhard Militzer of the University of California, Berkeley; and Pablo López Ríos, Michael Towler, and Richard Needs of the University of Cambridge.

This research was funded by the National Science Foundation and the Department of Energy. Computing resources were provided by the National Center for Atmospheric Research, the National Energy Research Scientific Computing Center, the National Center for Supercomputing Applications, the Computational Center for Nanotechnology Innovations, the TeraGrid, and the Ohio Supercomputer Center.

Contact: Kevin Driver, (614) 292-2887; Driver.16@osu.edu
John Wilkins, (614) 292-5193; Wilkins.5@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Kevin Driver | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>