Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants moderate climate warming

29.04.2013
As temperatures warm, plants release gases that help form clouds and cool the atmosphere, according to research from IIASA and the University of Helsinki.
The new study, published in Nature Geoscience, identified a negative feedback loop in which higher temperatures lead to an increase in concentrations of natural aerosols that have a cooling effect on the atmosphere.

"Plants, by reacting to changes in temperature, also moderate these changes," says IIASA and University of Helsinki researcher Pauli Paasonen, who led the study.

Scientists had known that some aerosols – particles that float in the atmosphere – cool the climate as they reflect sunlight and form cloud droplets, which reflect sunlight efficiently. Aerosol particles come from many sources, including human emissions. But the effect of so-called biogenic aerosol – particulate matter that originates from plants – had been less well understood. Plants release gases that, after atmospheric oxidation, tend to stick to aerosol particles, growing them into the larger-sized particles that reflect sunlight and also serve as the basis for cloud droplets. The new study showed that as temperatures warm and plants consequently release more of these gases, the concentrations of particles active in cloud formation increase.

"Everyone knows the scent of the forest," says Ari Asmi, University of Helsinki researcher who also worked on the study. "That scent is made up of these gases." While previous research had predicted the feedback effect, until now nobody had been able to prove its existence except for case studies limited to single sites and short time periods. The new study showed that the effect occurs over the long-term in continental size scales.

The effect of enhanced plant gas emissions on climate is small on a global scale – only countering approximately 1 percent of climate warming, the study suggested. "This does not save us from climate warming," says Paasonen. However, he says, "Aerosol effects on climate are one of the main uncertainties in climate models. Understanding this mechanism could help us reduce those uncertainties and make the models better."

The study also showed that the effect was much larger on a regional scale, counteracting possibly up to 30% of warming in more rural, forested areas where anthropogenic emissions of aerosols were much lower in comparison to the natural aerosols. That means that especially in places like Finland, Siberia, and Canada this feedback loop may reduce warming substantially.

The researchers collected data at 11 different sites around the world, measuring the concentrations of aerosol particles in the atmosphere, along with the concentrations of plant gases, the temperature, and reanalysis estimates for the height of the boundary layer, which turned out to be a key variable. The boundary layer refers to the layer of air closest to the Earth, in which gases and particles mix effectively. The height of that layer changes with weather. Paasonen says, "One of the reasons that this phenomenon was not discovered earlier was because these estimates for boundary layer height are very difficult to do. Only recently have the reanalysis estimates been improved to where they can be taken as representative of reality."

Reference

Paasonen, P., et. al. 2013. Evidence for negative climate feedback: warming increases aerosol number concentrations. Nature Geoscience doi: 10.1038/NGEO1800

For more information please contact:

Pauli Paasonen
IIASA Guest Research Scholar
Mitigation of Air Pollution and Greenhouse Gases
Tel: +43 2236 807 498
Mob: +43 699 17 253 365
paasonen@iiasa.ac.at
Ari Asmi
Research Coordinator
University of Helsinki, Department of Physics, Division of Atmospheric Sciences
Tel: +358 9 191 50181
Mob: +358 40 770 9729
ari.asmi@helsinki.fi
Markku Kulmala
Academy professor
University of Helsinki, Department of Physics, Division of Atmospheric Sciences
Tel: + 358 9 191 50756
Mob: +358 40 596 2311
markku.kulmala@helsinki.fi
Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at
About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. http://www.iiasa.ac.at

Katherine Leitzell | EurekAlert!
Further information:
http://www.iiasa.ac.at

More articles from Earth Sciences:

nachricht Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems
29.03.2017 | University of Wyoming

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>