Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Study Finds Earlier Peak for Spain’s Glaciers

27.08.2013
The last glacial maximum was a time when Earth’s far northern and far southern latitudes were largely covered in ice sheets and sea levels were low. Over much of the planet, glaciers were at their greatest extent roughly 20,000 years ago.

But according to a study headed by University of Pennsylvania geologist Jane Willenbring, that wasn’t true in at least one part of southern Europe. Due to local effects of temperature and precipitation, the local glacial maximum occurred considerably earlier, around 26,000 years ago.


A ring of boulders marks the former margin of an ancient glacier.

The finding sheds new light on how regional climate has varied over time, providing information that could lead to more-accurate global climate models, which predict what changes Earth will experience in the future.

Willenbring, an assistant professor in Penn’s Department of Earth and Environmental Science in the School of Arts and Sciences, teamed with researchers from Spain, the United Kingdom, China and the United States to pursue this study of the ancient glaciers of southern Europe.

“We wanted to unravel why and when glaciers grow and shrink,” Willenbring said.

In the study site in central Spain, it is relatively straightforward to discern the size of ancient glaciers, because the ice carried and dropped boulders at the margin. Thus a ring of boulders marks the edge of the old glacier.

It is not as easy to determine what caused the glacier to grow, however. Glaciers need both moisture and cold temperatures to expand. Studying the boulders that rim the ancient glaciers alone cannot distinguish these contributions. Caves, however, provide a way to differentiate the two factors. Stalagmites and stalactites — the stony projections that grow from the cave floor and ceiling, respectively — carry a record of precipitation because they grow as a result of dripping water.

“If you add the cave data to the data from the glaciers, it gives you a neat way of figuring out whether it was cold temperatures or higher precipitation that drove the glacier growth at the time,” Willenbring said.

The researchers conducted the study in three of Spain’s mountain ranges: the Bejár, Gredos and Guadarrama. The nearby Eagle Cave allowed them to obtain indirect precipitation data.

To ascertain the age of the boulders strewn by the glaciers and thus come up with a date when glaciers were at their greatest extent, Willenbring and colleagues used a technique known as cosmogenic nuclide exposure dating, which measures the chemical residue of supernova explosions. They also used standard radiometric techniques to date stalagmites from Eagle Cave, which gave them information about fluxes in precipitation during the time the glaciers covered the land.

“Previously, people believe the last glacial maximum was somewhere in the range of 19-23,000 years ago,” Willenbring said. “Our chronology indicates that’s more in the range of 25-29,000 years ago in Spain.”

The geologists found that, although temperatures were cool in the range of 19,000-23,000 years ago, conditions were also relatively dry, so the glaciers did not regain the size they had obtained several thousand years earlier, when rain and snowfall totals were higher. They reported their findings in the journal Scientific Reports.

Given the revised timeline in this region, Willenbring and colleagues determined that the increased precipitation resulted from changes in the intensity of the sun’s radiation on the Earth, which is based on the planet’s tilt in orbit. Such changes can impact patterns of wind, temperature and storms.

“That probably means there was a southward shift of the North Atlantic Polar Front, which caused storm tracks to move south, too,” Willenbring said. “Also, at this time there was a nice warm source of precipitation, unlike before and after when the ocean was colder.”

Willenbring noted that the new date for the glacier maximum in the Mediterranean region, which is several thousands of years earlier than the date the maximum was reached in central Europe, will help provide more context for creating accurate global climate models.

“It’s important for global climate models to be able to test under what conditions precipitation changes and when sources for that precipitation change,” she said. “That’s particularly true in some of these arid regions, like the American Southwest and the Mediterranean.”

When glaciers were peaking in the Mediterranean around 26,000 years ago, the American Southwest was experiencing similar conditions. Areas that are now desert were moist. Large lakes abounded, including Lake Bonneville, which covered much of modern-day Utah. The state’s Great Salt Lake is what remains.

“Lakes in this area were really high for 5,000-10,000 years, and the cause for that has always been a mystery,” Willenbring said. “By looking at what was happening in the Mediterranean, we might eventually be able to say something about the conditions that led to these lakes in the Southwest, too.”

This research was supported by the Ministerio de Ciencia e Innovación and the Junta de Comunidades de Castilla-La Mancha.

Katherine Unger Baillie | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Earth Sciences:

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>