Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Study Finds Earlier Peak for Spain’s Glaciers

27.08.2013
The last glacial maximum was a time when Earth’s far northern and far southern latitudes were largely covered in ice sheets and sea levels were low. Over much of the planet, glaciers were at their greatest extent roughly 20,000 years ago.

But according to a study headed by University of Pennsylvania geologist Jane Willenbring, that wasn’t true in at least one part of southern Europe. Due to local effects of temperature and precipitation, the local glacial maximum occurred considerably earlier, around 26,000 years ago.


A ring of boulders marks the former margin of an ancient glacier.

The finding sheds new light on how regional climate has varied over time, providing information that could lead to more-accurate global climate models, which predict what changes Earth will experience in the future.

Willenbring, an assistant professor in Penn’s Department of Earth and Environmental Science in the School of Arts and Sciences, teamed with researchers from Spain, the United Kingdom, China and the United States to pursue this study of the ancient glaciers of southern Europe.

“We wanted to unravel why and when glaciers grow and shrink,” Willenbring said.

In the study site in central Spain, it is relatively straightforward to discern the size of ancient glaciers, because the ice carried and dropped boulders at the margin. Thus a ring of boulders marks the edge of the old glacier.

It is not as easy to determine what caused the glacier to grow, however. Glaciers need both moisture and cold temperatures to expand. Studying the boulders that rim the ancient glaciers alone cannot distinguish these contributions. Caves, however, provide a way to differentiate the two factors. Stalagmites and stalactites — the stony projections that grow from the cave floor and ceiling, respectively — carry a record of precipitation because they grow as a result of dripping water.

“If you add the cave data to the data from the glaciers, it gives you a neat way of figuring out whether it was cold temperatures or higher precipitation that drove the glacier growth at the time,” Willenbring said.

The researchers conducted the study in three of Spain’s mountain ranges: the Bejár, Gredos and Guadarrama. The nearby Eagle Cave allowed them to obtain indirect precipitation data.

To ascertain the age of the boulders strewn by the glaciers and thus come up with a date when glaciers were at their greatest extent, Willenbring and colleagues used a technique known as cosmogenic nuclide exposure dating, which measures the chemical residue of supernova explosions. They also used standard radiometric techniques to date stalagmites from Eagle Cave, which gave them information about fluxes in precipitation during the time the glaciers covered the land.

“Previously, people believe the last glacial maximum was somewhere in the range of 19-23,000 years ago,” Willenbring said. “Our chronology indicates that’s more in the range of 25-29,000 years ago in Spain.”

The geologists found that, although temperatures were cool in the range of 19,000-23,000 years ago, conditions were also relatively dry, so the glaciers did not regain the size they had obtained several thousand years earlier, when rain and snowfall totals were higher. They reported their findings in the journal Scientific Reports.

Given the revised timeline in this region, Willenbring and colleagues determined that the increased precipitation resulted from changes in the intensity of the sun’s radiation on the Earth, which is based on the planet’s tilt in orbit. Such changes can impact patterns of wind, temperature and storms.

“That probably means there was a southward shift of the North Atlantic Polar Front, which caused storm tracks to move south, too,” Willenbring said. “Also, at this time there was a nice warm source of precipitation, unlike before and after when the ocean was colder.”

Willenbring noted that the new date for the glacier maximum in the Mediterranean region, which is several thousands of years earlier than the date the maximum was reached in central Europe, will help provide more context for creating accurate global climate models.

“It’s important for global climate models to be able to test under what conditions precipitation changes and when sources for that precipitation change,” she said. “That’s particularly true in some of these arid regions, like the American Southwest and the Mediterranean.”

When glaciers were peaking in the Mediterranean around 26,000 years ago, the American Southwest was experiencing similar conditions. Areas that are now desert were moist. Large lakes abounded, including Lake Bonneville, which covered much of modern-day Utah. The state’s Great Salt Lake is what remains.

“Lakes in this area were really high for 5,000-10,000 years, and the cause for that has always been a mystery,” Willenbring said. “By looking at what was happening in the Mediterranean, we might eventually be able to say something about the conditions that led to these lakes in the Southwest, too.”

This research was supported by the Ministerio de Ciencia e Innovación and the Junta de Comunidades de Castilla-La Mancha.

Katherine Unger Baillie | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>