Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers uncover a mechanism to explain dune field patterns

07.02.2012
In a study of the harsh but beautiful White Sands National Monument in New Mexico, University of Pennsylvania researchers have uncovered a unifying mechanism to explain dune patterns.

The new work represents a contribution to basic science, but the findings may also hold implications for identifying when dune landscapes like those in Nebraska's Sand Hills may reach a "tipping point" under climate change, going from valuable grazing land to barren desert.

The study was conducted by Douglas Jerolmack, an assistant professor in the Department of Earth and Environmental Science; postdoctoral researcher Federico Falcini; graduate students Raleigh Martin, Colin Phillips and Meredith Reitz; and undergraduate researcher Claire Masteller. The Penn researchers also collaborated with Ryan Ewing of the University of Alabama and Ilya Buynevich of Temple University.

Their paper was published in Nature Geoscience.

Much of the study's data was collected during field trips taken by students in an undergraduate and graduate course Jerolmack teaches at Penn, Geology 305: Earth Systems Processes. Each year, the class has traveled to White Sands to do fieldwork during spring break.

"It's a magnificent place to go, and one of the reasons I take my students there is really because it's so visually striking and compelling," Jerolmack said. "I want it to be memorable for them."

White Sands National Monument, located near Alamogordo in south-central New Mexico, is an enclosed basin that housed an ancient lake during the last ice age. Unlike most dune fields, which are composed of quartz sand, it's the world's largest dune field made of gypsum. Its blindingly white dunes cover 275 square miles.

The dune fields' groundwater table is located just a meter below the surface.

"So it means you're in a very hot arid place, but when you walk around you feel moisture on your feet," Jerolmack said.

The moisture creates a somewhat "sticky" surface, he added, "so, if the sand blows off a dune and lands, it sticks to the surface and can get deposited and left behind."

White Sands has long been the site of geologic inquiry. Scientists have put forward theories to explain individual elements of the dunes, including their shape, their movements over time and the presence or absence of plants. The novelty of this study lies in showing how all of these problems are a consequence of the interaction of wind with the dunes.

While the majority of Jerolmack's work examines how water moves sediment, wind becomes the dominant shaping force in deserts.

The researchers began by analyzing high-resolution elevation maps, measured each year for five years using aerial laser scans of the dune field surface. These data showed that dunes migrated fastest at the upwind (western) edge of the dune field, where the field transitioned into a flat and barren plain. Moving along the prevailing wind direction (northeast) into the dune field, the speed of the moving dunes consistently slowed down. The researchers reasoned that the friction resulting from the dunes was likely causing the wind to slow down over the dune field. They employed a simple theory to provide quantitative confirmation of this idea, demonstrating that aerodynamics was the cause of the dune migration pattern.

Small specks in the high-resolution images, which indicate where plants grow, also showed that the wind and dune migration activity appeared to impact vegetative growth. "There is a rapid transition from bare dunes to dunes that are almost entirely covered with vegetation," said Jerolmack. "We recognized that this transition occurs because the dunes are slowing down, and slowing down, and slowing down; eventually the dunes are moving so slowly that plants can grow on them."

According to the researchers' observations, dunes that are hit with stronger winds have fewer plants, as the plants cannot grow roots quickly enough to keep up with the shifting sands. By contrast, the dunes that experience the slower-moving winds are stable enough to support plants.

The plants then exert their own influence on dune shapes, as their root systems help stabilize the sand in which they grow. Because plants generally take hold first to a dunes' "horns" — the narrow slopes of boomerang-shaped dunes — before reaching the center, the researchers observed that dunes with plant-stabilized horns inverted as the wind blew the center inside out.

Where plants grew, the underlying groundwater was fresher and farther below the surface than areas bare of plants. The Penn researchers demonstrated that plants impacted the groundwater, rather than the other way around. By taking up water, the plants draw the groundwater table down. This also lowers the evaporation at the groundwater table, leaving the groundwater less salty than in unvegetated areas with high evaporation rates.

"What makes this so interesting is that, by understanding the changes in the wind pattern over the dunes, we can also understand the migration of the dunes, the plant and groundwater dynamics and even the long term deposition rate within the dune field," Jerolmack said. "This helps us to understand very well what's going on at White Sands, but these are all fundamental mechanisms that we think can apply in many other places."

North-central Nebraska's Sand Hills, located on a grass-stabilized dune field, is one example where this mechanism may apply. Under some climate change predictions, rainfall could decline in the upper Midwest. Even a small reduction in rainwater could mean that the grasses that stabilize the Sand Hills' dunes would no longer be able to survive. The dunes would then go back to being a barren migrating dune field, no longer serving the half-a-million cattle that now graze there.

"It happened during the Dust Bowl and it could happen again," Jerolmack said.

Katherine Unger Baillie | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>