Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An oxygen-poor 'boring' ocean challenged evolution of early life

19.03.2013
UC Riverside-led research team provides the first comprehensive view of early ocean chemistry and its relationship to early organisms

A research team led by biogeochemists at the University of California, Riverside has filled in a billion-year gap in our understanding of conditions in the early ocean during a critical time in the history of life on Earth.

It is now well accepted that appreciable oxygen first accumulated in the atmosphere about 2.4 to 2.3 billion years ago. It is equally well accepted that the build-up of oxygen in the ocean may have lagged the atmospheric increase by well over a billion years, but the details of those conditions have long been elusive because of the patchiness of the ancient rock record.

The period 1.8 to 0.8 billion years ago is of particular interest because it is the essential first chapter in the history of eukaryotes, which are single-celled and multicellular organisms with more complex cellular structures compared to prokaryotes such as bacteria. Their rise was a milestone in the history of life, including that of animals, which first appear around 0.6 to 0.7 billion years ago.

The most interesting thing about the billion-year interval is that despite the rise of oxygen and eukaryotes, the first steps forward were small and remarkably unchanging over a very long period, with oxygen likely remaining low in the atmosphere and ocean and with marine life dominated by bacteria rather than diverse and large populations of more complex eukaryotes. In fact, chemical and biological conditions in this middle age of Earth history were sufficiently static to earn this interval an unflattering nickname—'the boring billion.'

But lest it be thought that such a 'boring' interval is uninteresting, the extraordinary circumstances required to maintain such biological and chemical stasis for a billion years are worthy of close study, which is what motivated the UC Riverside-led team.

By compiling data for metals with very specific and well-known chemical responses to oxygen conditions in the ocean, emphasizing marine sediments from this critical time interval from around the world, the researchers revealed an ancient ocean that was oxygen-free (anoxic) and iron-rich in the deepest waters and hydrogen sulfide-containing over limited regions on the ocean margins.

"Oxygen, by contrast, was limited, perhaps at very low levels, to the surface layers of the ocean," said Christopher T. Reinhard, the first author of the research paper and a former UC Riverside graduate student. "What's most unique about our study, however, is that by applying numerical techniques to the data, we were able to place estimates, for the first time, on the full global extent of these conditions. Our results suggest that most of the deep ocean was likely anoxic, compared to something much less than 1 percent today."

Study results appear online this week in the Proceedings of the National Academy of Sciences.

"A new modeling approach we took allowed us to build on our past work, which was mostly limited to defining very localized conditions in the ancient ocean," Reinhard said. "The particular strength of the method lies in its ability to define chemical conditions on the seafloor that have long since been lost to plate tectonic recycling."

Reinhard, now a postdoctoral fellow at Caltech and soon to be an assistant professor at Georgia Institute of Technology, explained that chromium and molybdenum enrichments in ancient organic-rich sedimentary rocks, the focus of the study, actually track the amount of the metals present in ancient seawater. Critically, those concentrations are fingerprints of global ocean chemistry.

Beyond the utility of chromium and molybdenum for tracking oxygen levels in the early ocean, molybdenum is also a bioessential element critical in the biological cycling of nitrogen, a major nutrient in the ocean.

"Molybdenum's abundance in our ancient rocks is also a direct measure of its availability to early life," said Timothy W. Lyons, a professor of biogeochemistry at UCR and the principal investigator of the research project. "Our recent results tell us that poor supplies of molybdenum and their impact on nitrogen availability may have limited the rise of oxygen in the ocean and atmosphere and the proliferation of eukaryotic life. There is more to do, certainly, but this is a very tantalizing new read of a chapter in Earth history that is anything but boring."

Reinhard and Lyons were joined in the study by UCR alum Noah J. Planavsky, now at Caltech; Leslie J. Robbins and Kurt O. Konhauser at the University of Alberta, Canada; Camille A. Partin and Andrey Bekker at the University of Manitoba, Canada; UCR alum Benjamin C. Gill, now at the Virginia Institute of Technology; and Stefan V. Lalonde at the Université de Bretagne Occidentale, France.

The research was supported by a NASA Exobiology grant to Lyons.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>