Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origins of Pompeii-style artifacts examined at ISIS

26.02.2009
Roman artefacts which are nearly two thousand years old with similarities to ancient remains found at Pompeii in Italy have been examined at the Science and Technology Facilities Council's ISIS neutron source (21-22 February).

Researchers are hoping to learn more about our heritage by discovering whether the items were imported from southern Italy, or manufactured using similar techniques in Britain.

The bronze artefacts, which include a wine-mixing vessel, jugs and ceremonial pan-shaped objects, were discovered in Kent in two high status Roman pit-burials that are among the best examples ever seen in Britain. Previous excavation in an area close to the A2 where the items were found - by construction group Skanska Civil Engineering during a Highways Agency road improvement scheme - had predicted archaeological discoveries, but they were bigger than expected, with settlements ranging from the Bronze Age to the late medieval period.

Archaeological scientists have been comparing the 1st Century AD artefacts from Kent with those from Pompeii in Italy. The neutron beams at the world-leading ISIS facility allow for detailed crystal structure analysis of intact delicate objects without cutting out a sample of the material.

Dana Goodburn-Brown, a conservator and ancient metals specialist commissioned by Oxford Archaeology, has been analysing the artefacts along with archaeological scientist Dr. Evelyne Godfrey at ISIS to see how they were made. It is hoped results from the experiments will answer many questions about how the items were made to give more insight into their origin: for example, the metals used in manufacturing, how they were cast and finished, and how metal pieces were joined together.

''Our experiments will hopefully aid us in characterising different Roman metalworking practices and perhaps recognising the distinction between imported south Italian goods and high standard copies produced by skilled local craftsman. These artefacts represent a time of great change in Britain - they appear shortly after the Romans arrived in this country, and may represent locals taking on cultural practices of these 'newcomers," Dana Goodburn-Brown said.

Dr Andrew Taylor, ISIS Director said: "For these rare and highly-valued objects, analysis with neutrons can give fantastic insight. Neutrons are a very powerful way to look at matter at the molecular level and they give unique results that you can't easily get with any other technique. The measurements are extremely delicate and non-destructive, so the objects are unharmed by the analysis and can be returned to the museums unscathed.

The neutron beams we have at ISIS are a very versatile research tool and we're always keen to help researchers answer a broad range of questions. Here we realised that we could take the same analysis methods we developed to look at parts of aircraft and power plants and use them to help archaeologists understand how ancient objects were traded and manufactured."

Lucy Stone | EurekAlert!
Further information:
http://www.stfc.ac.uk

More articles from Earth Sciences:

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

nachricht 'Tiny clocks' crystallize understanding of meteorite crashes
29.05.2017 | University of Western Ontario

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>