Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Origins of Pompeii-style artifacts examined at ISIS

Roman artefacts which are nearly two thousand years old with similarities to ancient remains found at Pompeii in Italy have been examined at the Science and Technology Facilities Council's ISIS neutron source (21-22 February).

Researchers are hoping to learn more about our heritage by discovering whether the items were imported from southern Italy, or manufactured using similar techniques in Britain.

The bronze artefacts, which include a wine-mixing vessel, jugs and ceremonial pan-shaped objects, were discovered in Kent in two high status Roman pit-burials that are among the best examples ever seen in Britain. Previous excavation in an area close to the A2 where the items were found - by construction group Skanska Civil Engineering during a Highways Agency road improvement scheme - had predicted archaeological discoveries, but they were bigger than expected, with settlements ranging from the Bronze Age to the late medieval period.

Archaeological scientists have been comparing the 1st Century AD artefacts from Kent with those from Pompeii in Italy. The neutron beams at the world-leading ISIS facility allow for detailed crystal structure analysis of intact delicate objects without cutting out a sample of the material.

Dana Goodburn-Brown, a conservator and ancient metals specialist commissioned by Oxford Archaeology, has been analysing the artefacts along with archaeological scientist Dr. Evelyne Godfrey at ISIS to see how they were made. It is hoped results from the experiments will answer many questions about how the items were made to give more insight into their origin: for example, the metals used in manufacturing, how they were cast and finished, and how metal pieces were joined together.

''Our experiments will hopefully aid us in characterising different Roman metalworking practices and perhaps recognising the distinction between imported south Italian goods and high standard copies produced by skilled local craftsman. These artefacts represent a time of great change in Britain - they appear shortly after the Romans arrived in this country, and may represent locals taking on cultural practices of these 'newcomers," Dana Goodburn-Brown said.

Dr Andrew Taylor, ISIS Director said: "For these rare and highly-valued objects, analysis with neutrons can give fantastic insight. Neutrons are a very powerful way to look at matter at the molecular level and they give unique results that you can't easily get with any other technique. The measurements are extremely delicate and non-destructive, so the objects are unharmed by the analysis and can be returned to the museums unscathed.

The neutron beams we have at ISIS are a very versatile research tool and we're always keen to help researchers answer a broad range of questions. Here we realised that we could take the same analysis methods we developed to look at parts of aircraft and power plants and use them to help archaeologists understand how ancient objects were traded and manufactured."

Lucy Stone | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

nachricht New interactive map shows climate change everywhere in world
22.03.2018 | University of Cincinnati

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>