Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA, partners predict an average 'dead zone' for Gulf of Mexico

18.06.2015

Outlook incorporates multiple hypoxia models for first time

Scientists are expecting that this year's Gulf of Mexico hypoxic zone, also called the "dead zone," will be approximately 5,483 square miles or about the size of Connecticut-the same as it has averaged over the last several years.


This image shows nutrient-based hypoxia formation.

Credit: Nancy Rabalais, LUMCON

The dead zone in the Gulf of Mexico affects nationally important commercial and recreational fisheries and threatens the region's economy. Hypoxic zones hold very little oxygen, and are caused by excessive nutrient pollution, primarily from activities such as agriculture and wastewater. The low oxygen levels cannot support most marine life and habitats in near-bottom waters.

This year marks the first time the results of four models were combined. The four model predictions ranged from 4,344 to 5,985 square miles, and had a collective predictive interval of 3,205 to 7,645 square miles, which take into account variations in weather and oceanographic conditions.

The NOAA-sponsored Gulf of Mexico hypoxia forecast has improved steadily in recent years, a result of advancements of individual models and an increase in the number of models used for the forecast. Forecasts based on multiple models are called ensemble forecasts and are commonly used in hurricane and other weather forecasts.

The ensemble models were developed by NOAA-sponsored modeling teams and researchers at the University of Michigan, Louisiana State University, Louisiana Universities Marine Consortium, Virginia Institute of Marine Sciences/College of William and Mary, Texas A&M University, North Carolina State University, and the United States Geological Survey (USGS). The hypoxia forecast is part of a larger NOAA effort to deliver ecological forecasts that support human health and well-being, coastal economies, and coastal and marine stewardship.

"NOAA, along with our partners, continues to improve our capability to generate environmental data that can help mitigate and manage this threat to Gulf fisheries and economies," said Kathryn D. Sullivan, Ph.D., under secretary of commerce for oceans and atmosphere and NOAA administrator. "We are adding models to increase the accuracy of our dead zone forecast."

The Gulf of Mexico hypoxia forecast is based on nutrient runoff and river stream data from the USGS. The USGS operates more than 3,000 real-time stream gauges, 50 real-time nitrate sensors, and collects water quality data at long-term stations throughout the Mississippi River basin to track how nutrient loads are changing over time.

The USGS estimates that 104,000 metric tons of nitrate and 19,300 metric tons of phosphorus flowed down the Mississippi and Atchafalaya rivers into the Gulf of Mexico in May 2015. This is about 21 percent below the long-term (1980-2014) average for nitrogen, and 16 percent above the long-term average for phosphorus.

"Real-time nitrate sensors are advancing our understanding of how nitrate is transported in small streams and large rivers, including the main stem of the Mississippi River," said William Werkheiser, USGS associate director for water. "Long-term monitoring is critical to tracking how nutrient levels are changing in response to management actions and for improving modeling tools to estimate which sources and areas are contributing the largest amounts of nutrients to the Gulf. "

The confirmed size of the 2015 Gulf hypoxic zone will be released in early August, following a monitoring survey led by the Louisiana Universities Marine Consortium from July 28 to August 4.

###

USGS provides science for a changing world. Visit USGS.gov, and follow us on Twitter @USGS and our other social media channels. Subscribe to our news releases via email, RSS or Twitter.

NOAA's mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter, Instagram and our other social media channels.

Media Contact

Ben Sherman
ben.sherman@noaa.gov

 @NOAA

Ben Sherman | EurekAlert!

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>