Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research maps out trajectory of April 2015 earthquake in Nepal

24.07.2015

Data show earthquake’s multi-stage rupture process

New research has accurately mapped out the movement of the devastating 7.8-magnitude Nepal earthquake that killed over 9,000 and injured over 23,000 people. Scientists have determined that the earthquake was a rupture consisting of three different stages. The study could help a rapidly growing region understand its future seismic risks, according to the study’s authors.


Nepal Earthquake Animation

The Himalayan region is particularly prone to earthquakes and this study will serve as an important benchmark for understanding where future earthquakes may occur, especially since the area has experienced high population growth over the past few decades, the study’s authors said.

The study assessed the presence of low frequency and high frequency waves over the three stages of the earthquake. High frequency waves cause more shaking, thereby posing the greatest risks for structural damages. Low frequency waves are less violent and less damaging to buildings and infrastructure.

“The Nepal earthquake is a warning sign that the region is of high seismic risk, and each earthquake behaves differently. Some earthquakes jump from one fault line to another, whereas the Nepal quake apparently occurred on the same fault line in three different stages, moving eastward,” said Peter Shearer, a geophysicist at Scripps Institution of Oceanography at UC San Diego in La Jolla, California, and a co-author of the new study. “Using this research, we can better understand and identify areas of high seismic hazard in the region.”

This first peer-reviewed study on the April 2015 earthquake in Nepal, “Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves” was published online July 16 in the American Geophysical Union (AGU) journal Geophysical Research Letters.

Using the Global Seismic Network (GSN), Shearer and Scripps graduate student Wenyuan Fan were able to unravel the complex evolution of fault slips during this earthquake. The study concludes that the rupture traveled mostly eastward and occurred in three distinct stages; Stage 1 was weak and slow; Stage 2 was near Kathmandu and had the greatest slip but was relatively deficient in high-frequency radiation; and Stage 3 was relatively slow as well. Overall, this earthquake was more complicated, with multi-stage movements on multiple faults, than smooth models of continuous rupture on a single fault plane.

“Using the GSN instead of regional array data really enhanced the spatial resolution of the back-projection images and helped us see that frequency-dependent rupture was one of the main features of this earthquake,” said Fan. “Stage 2 was high-frequency-deficient and occurred closest to Kathmandu, which was probably why ground shaking was less severe than expected for such a high-magnitude earthquake.”

The Global Seismic Network provides high-quality broadband digital seismic data for monitoring earthquakes and learning about Earth’s structure. Fan and Shearer used the GSN data because they are open-source, have good coverage of the Nepal region, and have a long history of reliable recordings.

“In general, understanding large earthquakes will inform our ability to forecast the nature of future earthquakes,” said Shearer.

Shearer and Fan hope to use the same methodology to study other large, global earthquakes from the past decade to provide a broader picture of earthquake behavior and help in predicting ground shaking for future events.

The study was funded by the National Science Foundation.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of the article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2015GL064587/full?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the papers nor this press release is under embargo.
Title
“Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves”

Authors:
W. Fan and P. M. Shearer: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA.

Contact Information for the Authors:
Wenyuan Fan: w3fan@ucsd.edu

Peter Shearer: +1 (858) 534-2260, pshearer@ucsd.edu


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

Scripps Contact:
Christina Wu
+1 (858) 534-3654
chw261@ucsd.edu

Nanci Bompey | American Geophysical Union
Further information:
http://news.agu.org/press-release/new-research-maps-out-trajectory-of-april-2015-earthquake-in-nepal/

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>