Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research maps out trajectory of April 2015 earthquake in Nepal

24.07.2015

Data show earthquake’s multi-stage rupture process

New research has accurately mapped out the movement of the devastating 7.8-magnitude Nepal earthquake that killed over 9,000 and injured over 23,000 people. Scientists have determined that the earthquake was a rupture consisting of three different stages. The study could help a rapidly growing region understand its future seismic risks, according to the study’s authors.


Nepal Earthquake Animation

The Himalayan region is particularly prone to earthquakes and this study will serve as an important benchmark for understanding where future earthquakes may occur, especially since the area has experienced high population growth over the past few decades, the study’s authors said.

The study assessed the presence of low frequency and high frequency waves over the three stages of the earthquake. High frequency waves cause more shaking, thereby posing the greatest risks for structural damages. Low frequency waves are less violent and less damaging to buildings and infrastructure.

“The Nepal earthquake is a warning sign that the region is of high seismic risk, and each earthquake behaves differently. Some earthquakes jump from one fault line to another, whereas the Nepal quake apparently occurred on the same fault line in three different stages, moving eastward,” said Peter Shearer, a geophysicist at Scripps Institution of Oceanography at UC San Diego in La Jolla, California, and a co-author of the new study. “Using this research, we can better understand and identify areas of high seismic hazard in the region.”

This first peer-reviewed study on the April 2015 earthquake in Nepal, “Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves” was published online July 16 in the American Geophysical Union (AGU) journal Geophysical Research Letters.

Using the Global Seismic Network (GSN), Shearer and Scripps graduate student Wenyuan Fan were able to unravel the complex evolution of fault slips during this earthquake. The study concludes that the rupture traveled mostly eastward and occurred in three distinct stages; Stage 1 was weak and slow; Stage 2 was near Kathmandu and had the greatest slip but was relatively deficient in high-frequency radiation; and Stage 3 was relatively slow as well. Overall, this earthquake was more complicated, with multi-stage movements on multiple faults, than smooth models of continuous rupture on a single fault plane.

“Using the GSN instead of regional array data really enhanced the spatial resolution of the back-projection images and helped us see that frequency-dependent rupture was one of the main features of this earthquake,” said Fan. “Stage 2 was high-frequency-deficient and occurred closest to Kathmandu, which was probably why ground shaking was less severe than expected for such a high-magnitude earthquake.”

The Global Seismic Network provides high-quality broadband digital seismic data for monitoring earthquakes and learning about Earth’s structure. Fan and Shearer used the GSN data because they are open-source, have good coverage of the Nepal region, and have a long history of reliable recordings.

“In general, understanding large earthquakes will inform our ability to forecast the nature of future earthquakes,” said Shearer.

Shearer and Fan hope to use the same methodology to study other large, global earthquakes from the past decade to provide a broader picture of earthquake behavior and help in predicting ground shaking for future events.

The study was funded by the National Science Foundation.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of the article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2015GL064587/full?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the papers nor this press release is under embargo.
Title
“Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves”

Authors:
W. Fan and P. M. Shearer: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA.

Contact Information for the Authors:
Wenyuan Fan: w3fan@ucsd.edu

Peter Shearer: +1 (858) 534-2260, pshearer@ucsd.edu


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

Scripps Contact:
Christina Wu
+1 (858) 534-3654
chw261@ucsd.edu

Nanci Bompey | American Geophysical Union
Further information:
http://news.agu.org/press-release/new-research-maps-out-trajectory-of-april-2015-earthquake-in-nepal/

More articles from Earth Sciences:

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

nachricht NASA flights gauge summer sea ice melt in the Arctic
25.07.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>