Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Support Key to Glacier Mapping Efforts

30.09.2014

Thanks in part to support from NASA and the National Science Foundation, scientists have produced the first-ever detailed maps of bedrock beneath glaciers in Greenland and Antarctica. This new data will help researchers better project future changes to glaciers and ice sheets, and ultimately, sea level.

Researchers at the Center for Remote Sensing of Ice Sheets, or CReSIS, at the University of Kansas in Lawrence, Kansas, recently built detailed maps of the terrain beneath Greenland’s Jakobshavn Glacier and Byrd Glacier in Antarctica.


A 3-D map of bedrock beneath Jakobshavn Glacier generated with ice-penetrating radar data.

Image Credit: Center for Remote Sensing of Ice Sheets

The results of this study were published in the September issue of the Journal of Glaciology. CReSIS is a major participant in NASA’s Operation IceBridge, a NASA airborne science mission aimed at studying Arctic and Antarctica land and sea ice.

CReSIS researchers used computer software to process and analyze data collected during field campaigns unrelated to IceBridge that were conducted in cooperation with NASA and NSF in 2008 and 2011 to build maps of the two glaciers.

These data were from an ice-penetrating radar instrument known as the Multichannel Coherent Depth Sounder / Imager, or MCoRDS / I, which is similar to the instrument IceBridge has used since 2009. Bed topography data are vital for computer models used to project future changes to ice sheets and their contribution to sea level rise. “Without bed topography you cannot build a decent ice sheet model,” said CReSIS director Prasad Gogineni. 

Jakobshavn Glacier is of interest because it is the fastest-moving glacier in the world and drains about 7.5 percent of the Greenland Ice Sheet. Having a map of Jakobshavn’s bed has been a long-time goal of glaciologists. Byrd Glacier is also moving faster than average, but unlike many other glaciers, has been sounded in the past. Researchers mapped a previously unknown trench beneath Byrd Glacier and found that depth measurements from the 1970s were off by as much as a half mile in some places.

Ice-penetrating radar is one method for mapping bedrock topography. The instrument sends down radar waves, which reflect off of the ice surface, layers inside the ice sheet and bedrock back to the instrument, giving researchers a three-dimensional view. Ice-penetrating radar data from IceBridge flights helped build maps of Greenland and Antarctica’s bedrock and were even used to discover a large canyon beneath the ice in northern Greenland.

 Imaging rock beneath glaciers like Jakobshavn is important, but more difficult than mapping the ice sheet interior. The relatively warm ice and rough surfaces of outlet glaciers weaken and scatter radar signals, making the bed difficult to detect. To overcome these challenges, CReSIS used a sensitive radar instrument with a large antenna array and used several processing techniques to remove interference and build a view of sub-ice bedrock. “We showed that we have the technology to map beds,” said Gogineni. 

The MCoRDS / I instrument can be traced back to an early ice-penetrating radar CReSIS designed and built in the mid-90s in cooperation with NASA and NSF. In the two decades since then CReSIS has refined this instrument and has flown on NASA aircraft and alongside NASA instruments.

Researchers continue to improve instrument hardware and data processing and are looking ahead to mapping more glaciers in the future, which will likely involve small, unmanned aerial vehicles. “Improving ice sheet models means we need even finer resolution,” Gogineni said. “To do this we need lines flown much closer together, which small UAVs would be well suited for.”

For more information on NASA's Operation Ice Bridge, visit:

www.nasa.gov/icebridge

For more information about the Center for Remote Sensing of Ice Sheets, visit:

https://www.cresis.ku.edu/ 

George Hale | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/nasa-support-key-to-glacier-mapping-efforts/#.VCnJFhawTpg

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>