Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Support Key to Glacier Mapping Efforts

30.09.2014

Thanks in part to support from NASA and the National Science Foundation, scientists have produced the first-ever detailed maps of bedrock beneath glaciers in Greenland and Antarctica. This new data will help researchers better project future changes to glaciers and ice sheets, and ultimately, sea level.

Researchers at the Center for Remote Sensing of Ice Sheets, or CReSIS, at the University of Kansas in Lawrence, Kansas, recently built detailed maps of the terrain beneath Greenland’s Jakobshavn Glacier and Byrd Glacier in Antarctica.


A 3-D map of bedrock beneath Jakobshavn Glacier generated with ice-penetrating radar data.

Image Credit: Center for Remote Sensing of Ice Sheets

The results of this study were published in the September issue of the Journal of Glaciology. CReSIS is a major participant in NASA’s Operation IceBridge, a NASA airborne science mission aimed at studying Arctic and Antarctica land and sea ice.

CReSIS researchers used computer software to process and analyze data collected during field campaigns unrelated to IceBridge that were conducted in cooperation with NASA and NSF in 2008 and 2011 to build maps of the two glaciers.

These data were from an ice-penetrating radar instrument known as the Multichannel Coherent Depth Sounder / Imager, or MCoRDS / I, which is similar to the instrument IceBridge has used since 2009. Bed topography data are vital for computer models used to project future changes to ice sheets and their contribution to sea level rise. “Without bed topography you cannot build a decent ice sheet model,” said CReSIS director Prasad Gogineni. 

Jakobshavn Glacier is of interest because it is the fastest-moving glacier in the world and drains about 7.5 percent of the Greenland Ice Sheet. Having a map of Jakobshavn’s bed has been a long-time goal of glaciologists. Byrd Glacier is also moving faster than average, but unlike many other glaciers, has been sounded in the past. Researchers mapped a previously unknown trench beneath Byrd Glacier and found that depth measurements from the 1970s were off by as much as a half mile in some places.

Ice-penetrating radar is one method for mapping bedrock topography. The instrument sends down radar waves, which reflect off of the ice surface, layers inside the ice sheet and bedrock back to the instrument, giving researchers a three-dimensional view. Ice-penetrating radar data from IceBridge flights helped build maps of Greenland and Antarctica’s bedrock and were even used to discover a large canyon beneath the ice in northern Greenland.

 Imaging rock beneath glaciers like Jakobshavn is important, but more difficult than mapping the ice sheet interior. The relatively warm ice and rough surfaces of outlet glaciers weaken and scatter radar signals, making the bed difficult to detect. To overcome these challenges, CReSIS used a sensitive radar instrument with a large antenna array and used several processing techniques to remove interference and build a view of sub-ice bedrock. “We showed that we have the technology to map beds,” said Gogineni. 

The MCoRDS / I instrument can be traced back to an early ice-penetrating radar CReSIS designed and built in the mid-90s in cooperation with NASA and NSF. In the two decades since then CReSIS has refined this instrument and has flown on NASA aircraft and alongside NASA instruments.

Researchers continue to improve instrument hardware and data processing and are looking ahead to mapping more glaciers in the future, which will likely involve small, unmanned aerial vehicles. “Improving ice sheet models means we need even finer resolution,” Gogineni said. “To do this we need lines flown much closer together, which small UAVs would be well suited for.”

For more information on NASA's Operation Ice Bridge, visit:

www.nasa.gov/icebridge

For more information about the Center for Remote Sensing of Ice Sheets, visit:

https://www.cresis.ku.edu/ 

George Hale | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/nasa-support-key-to-glacier-mapping-efforts/#.VCnJFhawTpg

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>