Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recommend this page:
To (Recipient's email address)
Your name (Optional)
From (Your email address)
Message (Optional)
Datenschutz-Hinweis: Die Mailadressen werden von uns weder gespeichert noch an Dritte weitergegeben. Sie werden ausschließlich zu Übertragungszwecken verwendet.

NASA Sees Tropical Storm Karina Get a Boost

25.08.2014

NASA's TRMM satellite saw Tropical Storm Karina get a boost on August 22 in the form of some moderate rainfall and towering thunderstorms in the center of the storm. 

The Tropical Rainfall Measuring Mission or TRMM satellite passed directly above the center of Tropical Storm Karina on August 22, 2014 at 0151 UTC (Aug. 21 at 9:51 p.m. EDT).


NOAA's GOES-West satellite captured Tropical Storm Karina (left), Tropical Storm Lowell (center) and Tropical Storm Marie (right) in an infrared image on Aug. 22 at 5 a.m. EDT as they moved through the Eastern Pacific Ocean. Image Credit: NASA/NOAA's GOES Project

A rainfall analysis that used data from TRMM's Microwave Imager (TMI) showed that storms near Karina's center were dropping rain at a rate near 25 mm/1 inch per hour.

Where the heaviest rainfall was occurring, TRMM spotted a couple of towering thunderstorms as high as 15 km (~9 miles). 

... more about:
»EDT »NASA »NHC »TRMM »fluctuations »rainfall »satellite

NOAA's GOES-West satellite captured Tropical Storm Karina, Tropical Storm Lowell and Tropical Storm Marie in an infrared image on Aug. 22 at 5 a.m. EDT.

Karina appeared to be in the lead of the triple tropical train of storms moving through the Eastern Pacific Ocean. The image showed how much smaller and compact Karina is in comparison to Tropical Storm Lowell. 

At 11 a.m. EDT, Tropical Storm Karina's maximum sustained winds had increased to near 70 mph (110 kph), and the National Hurricane Center (NHC) noted that some fluctuations in intensity are possible before Karina begins to weaken on August 23.

The center of Tropical Storm Karina was located near latitude 15.0 north and longitude 135.6 west, about 1,325 miles (2,130 km) east of Hilo, Hawaii. Karina is moving to the northeast near 3 mph (6 kph) and is expected to turn to the east-northeast as it continues being affected by nearby Tropical Storm Lowell.

Forecaster Roberts at NHC noted that in two days Karina should be on a weakening trend because the storm will be moving into cooler waters and it will run into stable, dry air.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/karina-eastern-pacific/

Further reports about: EDT NASA NHC TRMM fluctuations rainfall satellite

More articles from Earth Sciences:

nachricht Underground fungi detected from space
04.05.2016 | Smithsonian Tropical Research Institute

nachricht How much does groundwater contribute to sea level rise?
03.05.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>