Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Cyclone Narelle approaching Western Australia coast

11.01.2013
NASA's Aqua satellite looked at Cyclone Narelle in visible and infrared light to understand the behavior of the storm. NASA's MODIS and AIRS instruments provided those data, respectively, and they showed that Narelle is gaining strength as it approaches the northern coast of Western Australia.

Watches and Warnings are posted for the western coast of Western Australia over the next several days as Narelle continues to move on a southerly track, where it is expected to remain at sea, but parallel the coast.


This visible image of Tropical Cyclone Narelle was captured by the MODIS instrument aboard NASA's Aqua satellite on Jan. 10, 2013, at 0625 UTC. Narelle developed the tropical cyclone signature shape with a tight rounded center and bands of thunderstorms wrapping around.

Credit: NASA Goddard MODIS Rapid Response Team

Current Australian warnings include: a Cyclone Warning is in effect for coastal areas from Whim Creek to Coral Bay, including Karratha, Dampier, Onslow and Exmouth. A Cyclone Watch is in effect for coastal areas from Coral Bay to Cape Cuvier.

A Blue alert is in effect for the coastal and island communities from Whim Creek to Mardie, including Wickham, Roebourne, Point Sampson, Karratha and DampiFor updated warnings and watches, visit the Australian Bureau of Meteorology web page: http://www.bom.gov.au/

australia/warnings/index.shtml.

When NASA's Aqua satellite passed over Narelle on Jan. 9 at 1811 UTC (1:11 p.m. EST/2:11 a.m. on Jan. 10, local time, Perth, Australia), the Atmospheric Infrared Sounder (AIRS) instrument captured data on the storm in infrared light. Infrared light shows temperature, and cloud top temperatures can indicate if clouds are reaching higher in the atmosphere (strengthening) or lower (weakening). AIRS data showed that the largest area of powerful thunderstorms were around the center, north and northwest of the center of circulation, an indication of where the heaviest rain was falling.

Another that flies aboard NASA's Aqua satellite called the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured a visible image of Tropical Cyclone Narelle as it was approaching the northern coast of Western Australia. The image was taken on Jan. 10, 2013 at 0625 UTC (1:25 a.m. EST/2:25 p.m. local time, Perth, Australia). The MODIS image revealed that Narelle developed the signature shape of a tropical cyclone with a tight rounded center and bands of thunderstorms wrapping into the center.

On Jan. 10 at 1500 UTC (10 a.m. EST/11 p.m. local time, Perth), Tropical Cyclone Narelle had maximum sustained winds near 80 knots (92 mph/148.2 kph). It was centered near 16.5 south latitude and 114.7 east longitude, about 370 nautical miles north of Learmonth, Australia. Narelle has been moving south-southwest at 10 knots (11.5 mph/18.5 kph). Narelle is churning up rough seas, as high as 32 feet (9.7 meters), which will likely cause coastal erosion and flooding. Narelle is expected to continue moving to the south-southwest toward Northwest Cape and gradually intensify.

Infrared imagery, such as what AIRS provides shows that a new feeder band of thunderstorms has formed to the south of the center. Infrared data showed that cloud tops around the center have cooled, indicating convection (rising air forming the thunderstorms that make up the cyclone) has strengthened, and cloud tops are higher and the storms more powerful. Microwave satellite data, which can see through clouds, showed that an eye was forming in the center. The JTWC forecasters call for Narelle to continue intensifying as it moves south, and peak around 115 knots (132.3 mph/213 kph) sometime on Jan. 12 before weakening again.

New forecast guidance from the Joint Typhoon Warning Center (JTWC) now calls for the west coast of Western Australia to experience Tropical Cyclone Narelle's rainfall, gusty winds and rough surf. The JTWC forecast now takes Narelle close to the coast from north of Learmonth to the peninsula south of Perth, where it is now expected to make landfall in the South West region of Western Australia on Jan. 15 after tracking south through Geographe Bay.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>