Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Cyclone Narelle approaching Western Australia coast

11.01.2013
NASA's Aqua satellite looked at Cyclone Narelle in visible and infrared light to understand the behavior of the storm. NASA's MODIS and AIRS instruments provided those data, respectively, and they showed that Narelle is gaining strength as it approaches the northern coast of Western Australia.

Watches and Warnings are posted for the western coast of Western Australia over the next several days as Narelle continues to move on a southerly track, where it is expected to remain at sea, but parallel the coast.


This visible image of Tropical Cyclone Narelle was captured by the MODIS instrument aboard NASA's Aqua satellite on Jan. 10, 2013, at 0625 UTC. Narelle developed the tropical cyclone signature shape with a tight rounded center and bands of thunderstorms wrapping around.

Credit: NASA Goddard MODIS Rapid Response Team

Current Australian warnings include: a Cyclone Warning is in effect for coastal areas from Whim Creek to Coral Bay, including Karratha, Dampier, Onslow and Exmouth. A Cyclone Watch is in effect for coastal areas from Coral Bay to Cape Cuvier.

A Blue alert is in effect for the coastal and island communities from Whim Creek to Mardie, including Wickham, Roebourne, Point Sampson, Karratha and DampiFor updated warnings and watches, visit the Australian Bureau of Meteorology web page: http://www.bom.gov.au/

australia/warnings/index.shtml.

When NASA's Aqua satellite passed over Narelle on Jan. 9 at 1811 UTC (1:11 p.m. EST/2:11 a.m. on Jan. 10, local time, Perth, Australia), the Atmospheric Infrared Sounder (AIRS) instrument captured data on the storm in infrared light. Infrared light shows temperature, and cloud top temperatures can indicate if clouds are reaching higher in the atmosphere (strengthening) or lower (weakening). AIRS data showed that the largest area of powerful thunderstorms were around the center, north and northwest of the center of circulation, an indication of where the heaviest rain was falling.

Another that flies aboard NASA's Aqua satellite called the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured a visible image of Tropical Cyclone Narelle as it was approaching the northern coast of Western Australia. The image was taken on Jan. 10, 2013 at 0625 UTC (1:25 a.m. EST/2:25 p.m. local time, Perth, Australia). The MODIS image revealed that Narelle developed the signature shape of a tropical cyclone with a tight rounded center and bands of thunderstorms wrapping into the center.

On Jan. 10 at 1500 UTC (10 a.m. EST/11 p.m. local time, Perth), Tropical Cyclone Narelle had maximum sustained winds near 80 knots (92 mph/148.2 kph). It was centered near 16.5 south latitude and 114.7 east longitude, about 370 nautical miles north of Learmonth, Australia. Narelle has been moving south-southwest at 10 knots (11.5 mph/18.5 kph). Narelle is churning up rough seas, as high as 32 feet (9.7 meters), which will likely cause coastal erosion and flooding. Narelle is expected to continue moving to the south-southwest toward Northwest Cape and gradually intensify.

Infrared imagery, such as what AIRS provides shows that a new feeder band of thunderstorms has formed to the south of the center. Infrared data showed that cloud tops around the center have cooled, indicating convection (rising air forming the thunderstorms that make up the cyclone) has strengthened, and cloud tops are higher and the storms more powerful. Microwave satellite data, which can see through clouds, showed that an eye was forming in the center. The JTWC forecasters call for Narelle to continue intensifying as it moves south, and peak around 115 knots (132.3 mph/213 kph) sometime on Jan. 12 before weakening again.

New forecast guidance from the Joint Typhoon Warning Center (JTWC) now calls for the west coast of Western Australia to experience Tropical Cyclone Narelle's rainfall, gusty winds and rough surf. The JTWC forecast now takes Narelle close to the coast from north of Learmonth to the peninsula south of Perth, where it is now expected to make landfall in the South West region of Western Australia on Jan. 15 after tracking south through Geographe Bay.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>