Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees developing tropical cyclone in Bay of Bengal

22.05.2014

A tropical low pressure area known as System 92B has been organizing in the Northern Indian Ocean's Bay of Bengal and NASA's TRMM satellite has shown strong thunderstorms and heavy rainfall in the developing storm.

The Tropical Rainfall Measuring Mission or TRMM satellite passed over System 92B on May 19 and 20 and captured data on System 92B's rainfall rates and cloud heights.


In this TRMM 3-D image of System 92B from May 20, rain was falling at a rate of over 33.8 mm (1.3 inches) per hour in some (red) areas.

Credit: NASA/SSAI, Hal Pierce

On May 19, 2014 at 1056 UTC (6:56 a.m. EDT) TRMM flew over a tropical low (92B) in the Bay of Bengal east of India. TRMM's Precipitation Radar (PR) instrument found that rain was falling at a rate of over 138 mm (about 5.4 inches) per hour in some strong convective storms.

... more about:
»Bengal »EDT »NASA »Space »TMI »TRMM »UTC »rainfall »satellite »storms »tropical »winds

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, TRMM PR data were used to create a 3-D image that showed a simulated view of the tropical disturbance's rainfall structure. In the 3-D image, tall storms were shown reaching heights of over 14km (about 8.7 miles) and returning reflectivity values of over 52dBZ to the satellite.

TRMM had another fairly good look at 92B on May 20 at 1000 UTC (6:00 a.m. EDT). TRMM's Microwave Imager (TMI) had a better view than the PR instrument that flew over the northern edge of 92B. TMI showed that 92B was better organized than previously and estimated that rain was falling at a rate of over 33.8 mm (1.3 inches) per hour in some areas.

The Joint Typhoon Warning Center or JTWC noted that a microwave image from Europe's METOP-B satellite on May 21 at 04:54 UTC (12:54 a.m. EDT) showed that the bulk of strong thunderstorms and deep convection in System 92B was over the storm's southern quadrant and wrapping into the low-level center.

On May 21 at 07:30 UTC/3:30 a.m. EDT the JTWC gave System 92B a high chance for development. At that time the center of circulation was near 16.1 north latitude and 91.4 east longitude, about 375 nautical miles south of Chittagong, Bangladesh.

Another instrument on METOP-B looked at the developing storm's winds. The prime objective of Advanced SCATterometer (ASCAT) is to measure wind speed and direction over the oceans. An image from ASCAT on May 21 at 03:57 UTC showed that the circulation of 92B appeared elongated, with 35 to 40 knot winds over the southwestern quadrant and weaker winds (15 to 20 knots) over the northern semi-cicle.

JTWC noted that the warm sea surface temperatures in the area will help with development.

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov

Further reports about: Bengal EDT NASA Space TMI TRMM UTC rainfall satellite storms tropical winds

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>