Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees developing tropical cyclone in Bay of Bengal

22.05.2014

A tropical low pressure area known as System 92B has been organizing in the Northern Indian Ocean's Bay of Bengal and NASA's TRMM satellite has shown strong thunderstorms and heavy rainfall in the developing storm.

The Tropical Rainfall Measuring Mission or TRMM satellite passed over System 92B on May 19 and 20 and captured data on System 92B's rainfall rates and cloud heights.


In this TRMM 3-D image of System 92B from May 20, rain was falling at a rate of over 33.8 mm (1.3 inches) per hour in some (red) areas.

Credit: NASA/SSAI, Hal Pierce

On May 19, 2014 at 1056 UTC (6:56 a.m. EDT) TRMM flew over a tropical low (92B) in the Bay of Bengal east of India. TRMM's Precipitation Radar (PR) instrument found that rain was falling at a rate of over 138 mm (about 5.4 inches) per hour in some strong convective storms.

... more about:
»Bengal »EDT »NASA »Space »TMI »TRMM »UTC »rainfall »satellite »storms »tropical »winds

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, TRMM PR data were used to create a 3-D image that showed a simulated view of the tropical disturbance's rainfall structure. In the 3-D image, tall storms were shown reaching heights of over 14km (about 8.7 miles) and returning reflectivity values of over 52dBZ to the satellite.

TRMM had another fairly good look at 92B on May 20 at 1000 UTC (6:00 a.m. EDT). TRMM's Microwave Imager (TMI) had a better view than the PR instrument that flew over the northern edge of 92B. TMI showed that 92B was better organized than previously and estimated that rain was falling at a rate of over 33.8 mm (1.3 inches) per hour in some areas.

The Joint Typhoon Warning Center or JTWC noted that a microwave image from Europe's METOP-B satellite on May 21 at 04:54 UTC (12:54 a.m. EDT) showed that the bulk of strong thunderstorms and deep convection in System 92B was over the storm's southern quadrant and wrapping into the low-level center.

On May 21 at 07:30 UTC/3:30 a.m. EDT the JTWC gave System 92B a high chance for development. At that time the center of circulation was near 16.1 north latitude and 91.4 east longitude, about 375 nautical miles south of Chittagong, Bangladesh.

Another instrument on METOP-B looked at the developing storm's winds. The prime objective of Advanced SCATterometer (ASCAT) is to measure wind speed and direction over the oceans. An image from ASCAT on May 21 at 03:57 UTC showed that the circulation of 92B appeared elongated, with 35 to 40 knot winds over the southwestern quadrant and weaker winds (15 to 20 knots) over the northern semi-cicle.

JTWC noted that the warm sea surface temperatures in the area will help with development.

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov

Further reports about: Bengal EDT NASA Space TMI TRMM UTC rainfall satellite storms tropical winds

More articles from Earth Sciences:

nachricht Water cooling for the Earth's crust
22.11.2017 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

nachricht Retreating permafrost coasts threaten the fragile Arctic environment
22.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>