Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites see changes in weakening Typhoon Mawar

06.06.2012
NASA's Tropical Rainfall Measuring Mission (TRMM) and Aqua satellites are just two in NASA's fleet that have been providing data on the evolving and now devolving tropical cyclone. TRMM provided rainfall and other data, while the AIRS instrument on NASA's Aqua satellite provided cloud temperature and extent.

Typhoon Mawar was weakening when the TRMM satellite saw it during the daytime on June 5, 2012 at 0728 UTC (3:28 a.m. EDT/U.S.). Rainfall derived from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments showed that Mawar was producing a very large area of rainfall southeast of Japan.


TRMM data showed Mawar was producing a very large area of rainfall southeast of Japan on June 5, 2012. Most of Mawar's heavy rainfall is revealed by TRMM to be north of the dissipating tropical cyclone's center. The most intense surface rainfall of over 40mm/hr (~1.6 inches) was shown northeast of the center. Much of Mawar's southwestern side was shown becoming rain free. This 3-D image shows that Mawar no longer had an eye wall. Storms near Mawar's center of circulation were reaching to heights of only about 10km (~6.2 miles). The highest storm towers of over 11km (~6.8 miles) were located in a band far to the northwest of Mawar's center.
Credit: NASA/SSAI, Hal Pierce

Most of Mawar's heavy rainfall is revealed by TRMM to be north of the dissipating tropical cyclone's center. The most intense surface rainfall of over 40mm/hr (~1.6 inches) was shown northeast of the center. Much of Mawar's southwestern side was shown becoming rain free.

A 3-D image from TRMM's PR shows that Mawar no longer had an eye wall. Storms near Mawar's center of circulation were reaching to heights of only about 10km (~6.2 miles). The highest storm towers of over 11km (~6.8 miles) were located in a band far to the northwest of Mawar's center.

NASA's Aqua satellite flew over Typhoon Mawar and the Atmospheric Infrared Sounder (AIRS) instrument captured infrared images from the storm on June 4, 5, and 6 as it expanded, strengthened, rained on the Philippines and headed north in the western North Pacific. Strongest thunderstorms where high cloud top temperatures were colder than -63 Fahrenheit (-52 Celsius). AIRS data now shows that Mawar is now becoming extra-tropical and is interacting with a frontal zone located south of Japan.

At 0900 UTC (5 a.m. EDT) on June 6, Mawar's maximum sustained winds were down to 65 knots (75 mph/120.4 kph). It was located near 28.1 North and 133.5 East, about 110 nautical miles (126.6 miles/ 203.7 kph) north-northeast of Minamidaito, Japan. Mawar is moving northeast at 23 knots (26.4 mph/42.6 kph).

Mawar is expected to stay to the east of Japan and move between the big island and Chichi Jima and Iwo Two. It should continue tracking east-northeast while weakening.

The system is expected to complete extra-tropical transitioning sometime on June 6. It is expected to weaken because of wind shear increasing to greater than 40 knots (46 mph/84 kph) and cool sea surface temperatures, colder than 23 Celsius (73.4F). Sea surface temperatures of 26.6 C (80F) are needed to maintain a tropical cyclone. As Mawar continues moving east-northeast, Japan's big island will likely experience rough surf along east-facing shores.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>