Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Project Eyes Climate Change in Greenland -- with a Third Eye on Mars

13.05.2011
Indiana University Bloomington scientists will use knowledge about methane production by cold-weather microbes on Earth to help NASA zero in on evidence for similar, carbon-based microbes that could have evolved on Mars, the Jovian moon Europa, or Saturn's Enceladus.

The three-year project, funded by a $2.4 million grant from NASA's Astrobiology Science and Technology for Exploring Planets (ASTEP) program, will be led by biogeochemist Lisa Pratt.

Her team will conduct field research in Greenland using the Kangerlussuaq International Science Support Facility as the base of operations and moving instruments and equipment to the Arctic with the 109th New York Air National Guard, which provides logistical support for NASA- and National Science Foundation-run research projects in remote polar regions.

"In order to be prepared for robotic or human exploration of other habitable worlds, scientists and engineers need to thoroughly test instruments and exploration concepts in extreme environments on Earth," said Pratt, Provost's Professor of Geological Sciences. "These environments mimic, in some ways, the places we expect to explore for evidence of extraterrestrial life."

Pratt will work with 11 colleagues at IU Bloomington, Princeton University, the Goddard Space Flight Center, the Jet Propulsion Laboratory, Honeybee Robotics Inc., and the National Oceanic and Atmospheric Administration, a division of the U.S. Dept. of Commerce. Their primary goals: study methane release near the receding edge of Arctic ice sheets to glean clues about how life might exist at the edge of extraterrestrial ice sheets, and evaluate methods to determine whether sources of methane are biotic or abiotic in origin.

On Earth, some methane is produced abiotically through water-rock reactions and thermogenically through breakdown of petroleum by geological processes. And some of Earth's methane comes directly or indirectly from bacteria -- either as a waste product or through the fermentation of acetate (vinegar) into methane and carbon dioxide. Both methane and carbon dioxide are greenhouse gases.

"Acetate fermentation is the principal pathway accounting for as much as 95 percent of methane production in these cold environments," said co-Principal Investigator Jeffrey R. White, an IU School of Public and Environmental Affairs professor of environmental science. "In fact, some of these cold-loving, acetate-producing bacteria may be metabolically coupled to the methane-producing bacteria."

Pratt recently concluded a directorship of a NASA Astrobiology Institute team that studied energy and nutrient cycles that sustain life in the deep subsurface of Earth and, potentially, Mars. One of the fruits of that project was the discovery of bacteria on Earth that live kilometers below ground, in solid rock, and use the byproducts of irradiated water as a source of energy.

The connection between Earth and environs elsewhere in the solar system is a necessary part of astrobiology. We only know of life on our own planet, so the conditions that support life on Earth are our only point of reference for what's possible on Mars, Europa, and Enceladus, the three bodies currently deemed most likely to harbor (or to have once harbored) life.

"Our work on methane cycling in warming tundra ecosystems fits well with the objectives for exploration of methane cycling on Mars -- a target of the upcoming missions," White said.

The study of global climate change on methane production is also of interest to researchers whose chief and perhaps only interest is what's happening on our planet.

"One other key aspect of this project is the ASTEP requirement for the field campaign to address an important Earth science question," Pratt said. "Our proposal was competitive because of the importance of documenting how methane is released from permafrost settings on Earth during a time of rapid de-glaciation."

To speak with Pratt or White, please contact David Bricker, University Communications, at 812-856-9035 or brickerd@indiana.edu

David Bricker | Newswise Science News
Further information:
http://www.indiana.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>