Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Project Eyes Climate Change in Greenland -- with a Third Eye on Mars

13.05.2011
Indiana University Bloomington scientists will use knowledge about methane production by cold-weather microbes on Earth to help NASA zero in on evidence for similar, carbon-based microbes that could have evolved on Mars, the Jovian moon Europa, or Saturn's Enceladus.

The three-year project, funded by a $2.4 million grant from NASA's Astrobiology Science and Technology for Exploring Planets (ASTEP) program, will be led by biogeochemist Lisa Pratt.

Her team will conduct field research in Greenland using the Kangerlussuaq International Science Support Facility as the base of operations and moving instruments and equipment to the Arctic with the 109th New York Air National Guard, which provides logistical support for NASA- and National Science Foundation-run research projects in remote polar regions.

"In order to be prepared for robotic or human exploration of other habitable worlds, scientists and engineers need to thoroughly test instruments and exploration concepts in extreme environments on Earth," said Pratt, Provost's Professor of Geological Sciences. "These environments mimic, in some ways, the places we expect to explore for evidence of extraterrestrial life."

Pratt will work with 11 colleagues at IU Bloomington, Princeton University, the Goddard Space Flight Center, the Jet Propulsion Laboratory, Honeybee Robotics Inc., and the National Oceanic and Atmospheric Administration, a division of the U.S. Dept. of Commerce. Their primary goals: study methane release near the receding edge of Arctic ice sheets to glean clues about how life might exist at the edge of extraterrestrial ice sheets, and evaluate methods to determine whether sources of methane are biotic or abiotic in origin.

On Earth, some methane is produced abiotically through water-rock reactions and thermogenically through breakdown of petroleum by geological processes. And some of Earth's methane comes directly or indirectly from bacteria -- either as a waste product or through the fermentation of acetate (vinegar) into methane and carbon dioxide. Both methane and carbon dioxide are greenhouse gases.

"Acetate fermentation is the principal pathway accounting for as much as 95 percent of methane production in these cold environments," said co-Principal Investigator Jeffrey R. White, an IU School of Public and Environmental Affairs professor of environmental science. "In fact, some of these cold-loving, acetate-producing bacteria may be metabolically coupled to the methane-producing bacteria."

Pratt recently concluded a directorship of a NASA Astrobiology Institute team that studied energy and nutrient cycles that sustain life in the deep subsurface of Earth and, potentially, Mars. One of the fruits of that project was the discovery of bacteria on Earth that live kilometers below ground, in solid rock, and use the byproducts of irradiated water as a source of energy.

The connection between Earth and environs elsewhere in the solar system is a necessary part of astrobiology. We only know of life on our own planet, so the conditions that support life on Earth are our only point of reference for what's possible on Mars, Europa, and Enceladus, the three bodies currently deemed most likely to harbor (or to have once harbored) life.

"Our work on methane cycling in warming tundra ecosystems fits well with the objectives for exploration of methane cycling on Mars -- a target of the upcoming missions," White said.

The study of global climate change on methane production is also of interest to researchers whose chief and perhaps only interest is what's happening on our planet.

"One other key aspect of this project is the ASTEP requirement for the field campaign to address an important Earth science question," Pratt said. "Our proposal was competitive because of the importance of documenting how methane is released from permafrost settings on Earth during a time of rapid de-glaciation."

To speak with Pratt or White, please contact David Bricker, University Communications, at 812-856-9035 or brickerd@indiana.edu

David Bricker | Newswise Science News
Further information:
http://www.indiana.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>