Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA/NOAA GOES-13 satellite movie shows how Tropical Storm Arlene formed

30.06.2011
Have you ever seen a low pressure area develop into a full-fledged tropical storm? The GOES-13 satellite has and now you can see it in a new animation released today from NASA and NOAA.

System 95L strengthened and became the Atlantic Ocean hurricane season's first tropical storm, named Arlene. It happened at 8 p.m. EDT on June 27 in the southwestern Gulf of Mexico, and the GOES-13 satellite caught the storm coming together.


This visible image of Arlene was taken from the GOES-13 satellite on June 29 at 11:31 UTC (7:30 a.m. EDT) and shows the storm just off the northeastern coast of Mexico. Credit: NASA/NOAA GOES Project, Dennis Chesters

The Geostationary Operational Environmental Satellite called GOES-13 provides continuous visible and infrared imagery of the eastern U.S. and Atlantic Ocean basin from its position in space. GOES satellites are operated by NOAA, and the NASA GOES Project located at NASA's Goddard Space Flight Center in Greenbelt, Md. creates images and compiled them into the video of the storm as it developed from June 27 to June 28.

The animation includes sped-up infrared and visible frames of data from the GOES-13 satellite and is squeezed down to 25 seconds. The movie shows satellite imagery that was captured in 15 minute intervals from June 27 at 11:15 UTC (7:15 a.m. EDT/6:15 a.m. CDT) until June 28 at 1115 UTC (7:15 a.m. EDT/6:15 a.m. CDT) taking the viewer from the time Arlene was the low pressure area called System 95L to the time she formed off of Mexico's northeastern coastline.

On June 27 when the animation begins at 1115 UTC, it's difficult to pinpoint a center of circulation for System 95L as it was over the Yucatan Peninsula. As the animation goes on, by 1931 UTC (3:31 p.m. EDT) you can start to see the circulation, and the middle of the storm becomes apparent as it moved into the southwestern Gulf of Mexico where it strengthened.

Arlene formed at 8 p.m. EDT on June 28 in the southwestern Gulf of Mexico after it crossed the Yucatan Peninsula as a low pressure system, previously known as System 95L. At that time, its maximum sustained winds were near 40 mph (65 kmh) and it was about 240 miles (380 km) east of Tuxpan, Mexico near 21.2 North and 93.7 West.

Twelve hours later at 8 a.m. EDT on June 28, its sustained winds remained at 40 mph, and it had moved closer to the Mexican coast. Arlene was located about 17 miles (280 km) east of Tampico, Mexico near 21.8 North and 9.2 West. It was moving to the west-northwest near 8 mph (13 kmh) and had a minimum central pressure of 1002 millibars.

Watches and warnings are in effect for northeastern Mexico today as Arlene creeps closer to a landfall in that country. A tropical storm warning is in effect from Barra De Nautla north to Bahia Algodones. Tropical Storm conditions are expected within 24 hours (from 8 a.m. EDT) in that area.

NOAA's National Hurricane Center (NHC) noted that Arlene is expected to produce copious amounts of rainfall between 4 to 8 inches and as much as 15 inches in mountainous areas, which could cause flash flooding and mudslides. Winds are expected to be at tropical storm strength along the coastline, and as Arlene moves inland those winds are expected to weaken. Coastal areas also need to heed a storm surge that could raise water levels by 1 to 2 feet above normal, according to the NHC.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>