Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA/NOAA GOES-13 satellite movie shows how Tropical Storm Arlene formed

30.06.2011
Have you ever seen a low pressure area develop into a full-fledged tropical storm? The GOES-13 satellite has and now you can see it in a new animation released today from NASA and NOAA.

System 95L strengthened and became the Atlantic Ocean hurricane season's first tropical storm, named Arlene. It happened at 8 p.m. EDT on June 27 in the southwestern Gulf of Mexico, and the GOES-13 satellite caught the storm coming together.


This visible image of Arlene was taken from the GOES-13 satellite on June 29 at 11:31 UTC (7:30 a.m. EDT) and shows the storm just off the northeastern coast of Mexico. Credit: NASA/NOAA GOES Project, Dennis Chesters

The Geostationary Operational Environmental Satellite called GOES-13 provides continuous visible and infrared imagery of the eastern U.S. and Atlantic Ocean basin from its position in space. GOES satellites are operated by NOAA, and the NASA GOES Project located at NASA's Goddard Space Flight Center in Greenbelt, Md. creates images and compiled them into the video of the storm as it developed from June 27 to June 28.

The animation includes sped-up infrared and visible frames of data from the GOES-13 satellite and is squeezed down to 25 seconds. The movie shows satellite imagery that was captured in 15 minute intervals from June 27 at 11:15 UTC (7:15 a.m. EDT/6:15 a.m. CDT) until June 28 at 1115 UTC (7:15 a.m. EDT/6:15 a.m. CDT) taking the viewer from the time Arlene was the low pressure area called System 95L to the time she formed off of Mexico's northeastern coastline.

On June 27 when the animation begins at 1115 UTC, it's difficult to pinpoint a center of circulation for System 95L as it was over the Yucatan Peninsula. As the animation goes on, by 1931 UTC (3:31 p.m. EDT) you can start to see the circulation, and the middle of the storm becomes apparent as it moved into the southwestern Gulf of Mexico where it strengthened.

Arlene formed at 8 p.m. EDT on June 28 in the southwestern Gulf of Mexico after it crossed the Yucatan Peninsula as a low pressure system, previously known as System 95L. At that time, its maximum sustained winds were near 40 mph (65 kmh) and it was about 240 miles (380 km) east of Tuxpan, Mexico near 21.2 North and 93.7 West.

Twelve hours later at 8 a.m. EDT on June 28, its sustained winds remained at 40 mph, and it had moved closer to the Mexican coast. Arlene was located about 17 miles (280 km) east of Tampico, Mexico near 21.8 North and 9.2 West. It was moving to the west-northwest near 8 mph (13 kmh) and had a minimum central pressure of 1002 millibars.

Watches and warnings are in effect for northeastern Mexico today as Arlene creeps closer to a landfall in that country. A tropical storm warning is in effect from Barra De Nautla north to Bahia Algodones. Tropical Storm conditions are expected within 24 hours (from 8 a.m. EDT) in that area.

NOAA's National Hurricane Center (NHC) noted that Arlene is expected to produce copious amounts of rainfall between 4 to 8 inches and as much as 15 inches in mountainous areas, which could cause flash flooding and mudslides. Winds are expected to be at tropical storm strength along the coastline, and as Arlene moves inland those winds are expected to weaken. Coastal areas also need to heed a storm surge that could raise water levels by 1 to 2 feet above normal, according to the NHC.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>