Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-JAXA's TRMM satellite sees rapid intensification of category-5 Marcia

23.02.2015

At 11 p.m. local time (1324 UTC) on Feb. 19, 2015, the Precipitation Radar on the Tropical Rainfall Measuring Mission (TRMM) satellite observed the eyewall of Tropical Cyclone Maria in the Coral Sea. At that time, Marcia was rapidly intensifying to category 5 on the Saffir-Simpson scale, a little more than 12 hours before an expected landfall in Queensland, Australia.

The TRMM satellite is managed by both NASA and the Japan Aerospace Exploration Agency. The TRMM Precipitation Radar gives three-dimensional information about the tropical storm's eyewall.


TRMM data showed a hot tower up to 8.6 miles (14 km) high in the northwest quadrant of the eyewall (the purple pinnacle of the outer, blue volume).

Image Credit: NASA/JAXA, Owen Kelley

In this case, the heavy precipitation (the red volume of the image) near the ocean surface is the powerful base of a hot tower in the southwest quadrant of the eyewall.

A "hot tower" is a rain cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere. It extends approximately nine miles (14.5 km) high in the tropics. These towers are called "hot" because they rise to such altitude due to the large amount of latent heat.

Water vapor releases this latent heat as it condenses into liquid. NASA research found that a tropical cyclone with a hot tower in its eyewall was twice as likely to intensify within the next six hours, than a cyclone that lacked a tower.

Since this tropical cyclone is in the southern hemisphere, the winds rotate clockwise (the opposite direction from North Atlantic hurricanes). The updraft in this tower is strong enough to lift precipitation, as it rotates clockwise, up to an 8.6 mile (14 km) altitude in the northwest quadrant of the eyewall (the purple pinnacle of the outer, blue volume).

With infrared satellite imagery, only the tall overshooting top can be seen, leaving one in the dark about what precipitation processes are on-going "under the lid" of the tropical cyclone. Forecasters are particularly interested in these processes when a tropical cyclone is rapidly intensifying near landfall, as is the case with Marcia at the time of this TRMM overflight.

While the TRMM satellite is near the end of its operational lifetime, a more advanced satellite was launched about a year ago that will be able to make 3-D observations of tropical cyclones with a dual-frequency radar and also carries a passive-microwave radiometer. This new satellite is called the Global Precipitation Measurement (GPM) core satellite.

For more information about TRMM and GPM, visit: http://pmm.nasa.gov.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>