Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's 3-D animation of Typhoon Conson's heavy rainfall and strong thunderstorms

14.07.2010
Imagine seeing a typhoon from space, and seeing it in three dimensions. That's what the Tropical Rainfall Measuring Mission (TRMM) satellite can do with any typhoon, and just did with Typhoon Conson. TRMM's 3-D look at tropical cyclones provide scientists with information on the height of towering thunderstorms and the rate of rainfall in them, and Conson has high thunderstorms and heavy rainfall.

The TRMM satellite got a good view of tropical storm Conson (known as "Basyang" in the Philippines) in the west Pacific Ocean as it passed directly overhead on July 12 at 1550 UTC (1:50 p.m. EDT/1:50 a.m. local time on July 13). TRMM Precipitation Radar (PR) and TRMM Microwave Imager (TMI) data from the orbit were used when creating the rainfall analysis.

That rainfall analysis showed intensifying tropical storm Conson was already very well organized. TRMM data clearly showed that an eye was forming with heavy thunderstorms located northeast of the storm's center of circulation. Those thunderstorms were dropping rainfall at a rate of almost 2 inches per hour.

Hal Pierce of NASA's TRMM Team, located at NASA's Goddard Space Flight Center in Greenbelt, Md. created the 3-D animation of Typhoon Conson using data from July 12. In the animation, Pierce said that "The developing eye is shown reaching to heights above 15 kilometers (~9 miles)."

There were also hot towers around Conson's eye. A hot tower is a tropical cumulonimbus cloud that punches through the tropopause and reaches into the stratosphere. They are called "hot towers" because they rise high due to the large amount of latent heat released as water vapor condenses into liquid and freezes into ice. Hot towers may appear when the hurricane is about to intensify, which is exactly what Conson did after the hot towers were seen by the TRMM satellite.

The TRMM Precipitation Radar 3-D image showed that Conson was already a typhoon at 1550 UTC (1:50 p.m. EDT/1:50 a.m. local Asia/Manila time), which allowed forecasters to reclassify Conson from a tropical storm to a typhoon. TRMM Precipitation Radar revealed that the eye was already well formed indicating that Conson had reached typhoon status at that time.

TRMM is a joint mission between NASA and the Japanese space agency JAXA.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>