Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the Mountain slides down into the Valley

17.11.2008
Rock avalanches and landslides, rock falls and slope slips are all contained in the concept of mass movements. The ever more intensive usage of the mountainous regions and the climate change are some of the causes for these natural erosion processes.

Engineering geologists from Vienna University of Technology (TU Vienna) are modeling mass movements with specially adapted computer programs. Their know-how is helpful for the risk assessment of imminent landslides and slope slips. Some of the best-known showplaces are a moving slope located above the Norwegian Geiranger Fjord or the Gschliefgraben at the feet of Traunstein in Gmunden.

A considerable amount of data is necessary for mass movement simulations, from a terrain model above the crash-ready mass to an analysis of the so-called "silent witnesses." The latter involves rock masses that have already moved off at a previous point in time. According to Professor Rainer Poisel from the Institute of Engineering Geology of the TU Vienna, there are many of these "silent witnesses." "They help us determine which variables come into play each time there is a crash. We have already adapted existing computer programs in order to be able to better simulate these mass movements," says Poisel.

The TU research team has worked into the PFC Program (Particle Flow Code) values such as the rolling friction or the leap height of the individual rock bodies. Recently research based on this method has also taken place in Norway, on Mount "Aknes," which threatens to crash over the famous Geiranger Fjord and which could trigger tidal waves. Another program (DAN 3D) models the crashing mass as a hard fluid.

Poisel asserts: "We have simulated several falling events both with PFC as well as with the DAN code, and significant similarities have been found between the results of the particle and those of the fluid models." Each landslide runs on a different pattern. "A certain mass comes off and crashes down over foothills. Sometimes the mass remains in the same spot. Other times, it travels out for miles and miles into the foothills. We use DAN and PFC to calculate the tracking of these trips," adds Poisel.

Poisel and his colleagues are also watching major slope movements at Murau and Gmunden in the much-cited Gschliefgraben. Such occurrences may be rarely prevented because they involve masses that are way too large. "All that is left for us to do is watching, extracting as much water as possible from the slope, warning and also assessing the risks." The risk is calculated as damages multiplied by the probability of occurrence. "At Murau, the cost-use ratio has indicated, for example, that, for economic reasons, the valley flanks existing at an early stage can be counteracted only by an improvement of the woodlands. This has as a consequence the fact that the water infiltration into the underground is minimized during precipitations," says Poisel. Currently, in Gmunden, the water is still pumped out the moved mass through wells in order to extract the lubricant out of the slope in an attempt to counteract the movements.

For more information, please contact:
Univ.Prof. Dipl.-Ing. Dr. Rainer Poisel
Institute for Engineering Geology
Vienna University of Technology
Karlsplatz 13 // 203, 1040 Vienna
Ph.: +43/1/58801 - 20319
Fax: +43/1/58801 - 20399
E-mail: rpoisel@mail.tuwien.ac.at
Spokesperson:
Daniela Hallegger, M.A.
TU Vienna - PR and Communication
Operngasse 11/E011, A-1040 Vienna
Ph.: +43-1-58801-41027
Fax: +43-1-58801-41093
E-mail: daniela.hallegger@tuwien.ac.at

Werner Sommer | idw
Further information:
http://www.tuwien.ac.at/pr
http://www.tuwien.ac.at/index.php?id=8149

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>