Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorite just one piece of an unknown celestial body

16.12.2010
Scientists from all over the world are taking a second, more expansive, look at the car-sized asteroid that exploded over Sudan's Nubian Desert in 2008.

Initial research was focused on classifying the meteorite fragments that were collected two to five months after they were strewn across the desert and tracked by NASA's Near Earth Object astronomical network.

Now in a series of 20 papers for a special double issue of the journal Meteoritics and Planetary Science, published on December 15, researchers have expanded their work to demonstrate the diversity of these fragments, with major implications for the meteorite's origin.

In the first round of research, Carnegie Geophysical scientist Doug Rumble, in collaboration with Muawia Shaddad of the University of Khartoum, examined one fragment of the asteroid, called 2008 TC3, and determined that it fell into a very rare category of meteorite called ureilites. Ureilites have a very different composition from most other meteorites. It has been suggested that all members of this meteoric family might have originated from the same source, called the ureilite parent body, which could have been a proto-planet.

Now Rumble has expanded his work to examine 11 meteorite fragments, focusing on the presence of oxygen isotopes. Isotopes are atoms of the same element that have extra neutrons in their nuclei.

Rumble explains: "Oxygen isotopes can be used to identify the meteorite's parent body and determine whether all the fragments indeed came from the same source. Each parent body of meteorites in the Solar System, including the Moon, Mars, and the large asteroid Vesta, has a distinctive signature of oxygen isotopes that can be recognized even when other factors, such as chemical composition and type of rock, are different."

Rumble and his team prepped tiny crumbs of these 11 meteorite fragments and loaded them into a reaction chamber where they were heated with a laser and underwent chemical reactions to release oxygen and then used another device, called a mass spectrometer, to measure the concentrations of these oxygen isotopes. Results showed that the full range of oxygen isotopes known to be present in ureilites were also present in the studied fragments.

"It was already known that the fragments in the Nubian Desert came from the same asteroid. Taking that into account, these new results demonstrate that the asteroid's source, the ureilite parent body, also had a diversity of oxygen isotopes," says Rumble.

The diversity of oxygen isotopes found in ureilites probably arises from the circumstances of the parent this body's formation. Rumble theorizes that the rock components of this parent body were heated to the point of melting and then cooled into crystals so quickly that the oxygen isotopes present could not come to an equilibrium distribution throughout.

Together the collection of 20 papers published in Meteoritics and Planetary Science offer enormous insight about the formation and composition of ureilites and their hypothesized parent body.

This study was supported through a grant from NASA's Cosmochemistry program, a grant from NASA under the Planetary Geology and Geophysics program and a grant from NASA's Planetary Astronomy program. The samples were made available by the University of Khartoum.

The Carnegie Institution for Science (carnegiescience.edu ) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Douglas Rumble | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>