Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mediterranean meteorological tide has increased by over a millimetre a year since 1989

24.11.2014

A new database developed by the University of Cantabria (Spain) provides data on sea level variation due to atmospheric changes in the south of Europe between 1948 and 2009. Over the last two decades sea levels have increased in the Mediterranean basin.

"The meteorological sea level or meteorological tide component is the variation of the sea level as a result of atmospheric changes or more specifically, changes in the atmospheric pressure and the wind at the sea surface," Alba Cid explains to SINC, Alba being the lead author of the study published in the journal 'Climate Dynamics' which analyses 62 years' worth of data for this sea level component.


This is Les Rotes beach in Denia (Alicante, Spain).

Credit: Echiner1

Cid and her team at the Environmental Hydraulics Institute at the University of Cantabria (Spain) have generated two (long-term and high resolution) time series for meteorological tides in the Atlantic and Mediterranean basins in the south of Europe and the Canary Islands.

In total, they have analysed the trends from 1948 to 2009, reflected in a new Global Ocean Surges (GOS) database. The simulation tool used is the numeric Regional Ocean Modelling System (ROMS) developed by the University of Rutgers (USA).

The results are very different depending on the period. "The trends from 1948 to 1989 are very small and negative in all of the area analysed, which means that the meteorological tide has decreased during this time period," points out Cid.

On the African coast of the Atlantic, the Adriatic coast and the north-east of the Eastern basin, the meteorological component to sea level has decreased by 0.35 millimetres for every year during this period. The trends are weaker on the Spanish coast of the north Atlantic and along the African coast in the Eastern basin of the Mediterranean.

However, over the last two decades, from 1989 to 2009, the trends are positive, or rather sea levels have increased, and to a greater degree. The tides present values of less than 0.5 mm per year in the Atlantic basin and more than 1 mm a year in several areas of the Mediterranean coast.

The GOS database also differentiates between summer and winter in each time series. According to the study, the trends observed in winter are negative in the areas analysed. The decrease in sea levels is more obvious (1mm per year) in the centre of the Mediterranean and the Adriatic Sea.

The sea level rises in summer, especially in the North Atlantic, the Spanish coast of the Mediterranean and the Tunisian coast. "Although negative trends of 0.3 mm a year can also be observed during this season along the African coast of the Atlantic," the researchers highlight from the study.

Hourly data for 62 years

To validate the results of the numerical simulations, the researchers have compared the data generated every hour from 1948 to 2009 in 58 coastal locations in Spain, Portugal, France, Italy and the Canary Islands, with real data measured by tide gauges and satellites. "The results have allowed us to calculate these long-term trends," adds Cid.

From this work and the data described in the article, the investigators are now analysing the most extreme levels and their relation to climate patterns, such as for example the North Atlantic oscillation (NAO). "We will shortly be publishing an article with the results obtained," concludes the lead author.


References:

Alba et al. "A high resolution hindcast of the meteorological sea level component for Southern Europe: the GOS dataset" Climate Dynamics 43 (7-8): 2167-2184 october 2014 DOI: 10.1007/s00382-013-2041-0

SINC | EurekAlert!
Further information:
http://www.fecyt.es/fecyt/home.do

Further reports about: African Climate Dynamics GOS Mediterranean Ocean long-term sea level

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>