Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring water from space

13.11.2008
Observations from satellites now allow scientists to monitor changes to water levels in the sea, in rivers and lakes, in ice sheets and even under the ground. As the climate changes, this information will be crucial for monitoring its effects and predicting future impacts in different regions.

Sea level rise in one of the major consequences of global warming, but it is much more difficult to model and predict than temperature. It involves the oceans and their interaction with the atmosphere, the ice sheets, the land waters and even the solid Earth, which modifies the shapes of ocean basins. Measurements from tidal gauges show that for most of the twentieth century, sea levels rose by 1.8 mm per year on average.

Since the 1990s, a number of altimeter satellites have been measuring the height of the ocean surface and this has dramatically improved our understanding of sea level rise. Currently, three altimeter satellites cover the entire globe every 10 to 35 days, and can measure the height of the sea surface to a precision of 1 to 2 cm.

These measurements show that since the start of 1993, sea level has been rising by 3.3 mm a year, almost double the rate of the previous 50 years. "It could be that we are seeing a decadal fluctuation, and in the near future the rate will fall again," says Anny Cazenave, from the Laboratoire d'Etudes en Géophysique et Océanographie Spatiale (LEGOS) in Toulouse, "but I do not think so. For several years now, the rate of rise has not changed significantly."

Melting ice fills the sea

Cazenave's team, and other groups, calculate that for 1993-2003, about half of the sea level rise was due to the oceans expanding as they became warmer, and the other half was due to shrinking land ice. Since 2003, ocean warming has had a temporary break but sea level has continued to rise. Now, about 80% of the annual sea level rise can be attributed to accelerated land ice loss from glaciers, Greenland and Antarctica. This has been revealed by a brand new satellite technique, called space gravimetry.

The GRACE mission comprises two satellites, launched in 2002, which measure how the Earth's gravity field varies with time. The gravity field depends on how mass is distributed on Earth, and affects the speed of satellites in orbit. By closely monitoring the speed of both satellites, as they orbit the planet, it is possible to measure the change in mass of water or ice in different regions.

The method has shown that the Greenland ice sheet is losing about 150 gigatonnes of ice each year, two thirds of which is large chunks of ice flowing rapidly into the sea. The combined effect of ice loss from Greenland and West Antarctica has contributed about 1 mm per year to the rising seas over the past five years.

Rivers run low

Using GRACE, Cazenave and others have also looked at changes in water storage in river basins. In the period from 2002-2006, they found that some basins, including the Congo and the Mississippi, have been losing water, but river systems in the boreal regions are gaining water.

Meanwhile, scientists at the European Space Agency, collaborating with DeMontfort University in the UK, have begun to use data from the satellites that measure sea level, to assess lake and river levels on land.

Fresh inland water is much in demand, but those managing it suffer from a grave lack of information about how much of it there is. "The number of river gauges is diminishing every day, and many catchments are now entirely unmeasured," says Jérôme Benveniste of the European Space Agency's data processing centre ESRIN, in Frascati, Italy. "But we have 16 years' worth of data on river and lake levels. It's just a question of processing it all."

The work Benveniste is leading can recreate water levels in reservoirs, or lakes, and reconstruct the annual ebb and flow in large river basins like the Amazon.

Other teams are combining these surface water level measurements with gravimetry measurements from the GRACE satellites, to derive the amount of ground water stored in each catchment. "International cooperation is essential in achieving this goal, with global coverage and local validation of the data," says Benveniste. "At the moment, Europe is leading the field."

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>