Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematics and the Ocean: Movement, Mixing and Climate Modeling

18.10.2012
Studying the dynamics of the ocean system can greatly improve our understanding of key processes of ocean circulations, which have implications for future climate. Can applying mathematics to the research help? Dr. Emily Shuckburgh of the British Antarctic Survey, speaking at the 2012 SIAM Annual Meeting, thinks the answer is an emphatic “yes.”

Dr. Shuckburgh described mathematical ideas from dynamical systems used by her group, along with numerical modeling and experimental observations, to analyze circulation in the Southern Ocean.

The Southern Ocean is unique in that it connects three major ocean basins—the Pacific, the Atlantic and the Indian oceans—with a powerful current that circulates all the way around Antarctica. This circumpolar current travels from the North Atlantic, sinking down to the bottom of the ocean and coming up to the surface around Antarctica, thus connecting the deep ocean with the atmosphere above. When water from the deep ocean comes up to the surface, it can exchange heat and carbon dioxide from the atmosphere, thus making it highly significant for climate change.

Shuckburgh and her team study circulation at Drake Passage, which separates South America from the Antarctic Peninsula, at the point where water in the Southern Ocean passes from the Pacific to the Atlantic oceans. Because of the differing properties of water from different regions—salty water from the Northern Atlantic and the extremely cold waters of Antarctic ice—this region is perfectly suited to study how water with different properties mixes together during circulation. Moreover, as water moves through Drake Passage, flowing over rock-bottom mountainous topography and then churning upward, it creates a great deal of mixing. Mixing is a key determinant in the uptake of heat and carbon by oceans.

Shuckburgh’s team quantifies the amount of mixing by taking measurements of ocean properties and currents from the surface of the water down to the bottom of the ocean. In addition, dyes and tracers are tracked as they flow through Drake Passage in order to observe how mixing occurs. Diffusion of the tracer is a good qualitative indicator of transport and mixing properties, and can give an indication of how absorbed heat may be redistributed in the water.

Ocean mixing is currently not well simulated by climate models, even though it plays a major role in ocean heat uptake. Oceans are capable of absorbing, storing and releasing large quantities of heat. As greenhouse gases trap heat from the sun, oceans absorb more heat, leading to increased sea surface temperatures, rising sea levels, and consequently, changing climate patterns around the world. In addition, oceans can diffuse the effects of changes in temperature over great distances due to mixing and movement, and potential alteration of ocean currents, which can result in a greater ability to absorb heat. Studying processes such as ocean mixing is thus essential to understanding the oceans’ influence on future climate.

About SIAM

The Society for Industrial and Applied Mathematics (SIAM), headquartered in Philadelphia, Pennsylvania, is an international society of over 14,000 individual members, including applied and computational mathematicians and computer scientists, as well as other scientists and engineers. Members from 85 countries are researchers, educators, students, and practitioners in industry, government, laboratories, and academia. The Society, which also includes nearly 500 academic and corporate institutional members, serves and advances the disciplines of applied mathematics and computational science by publishing a variety of books and prestigious peer-reviewed research journals, by conducting conferences, and by hosting activity groups in various areas of mathematics. SIAM provides many opportunities for students including regional sections and student chapters.

Karthika Muthukumaraswamy | EurekAlert!
Further information:
http://www.siam.org
http://connect.siam.org/?p=2705

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>