Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mathematics and the Ocean: Movement, Mixing and Climate Modeling

Studying the dynamics of the ocean system can greatly improve our understanding of key processes of ocean circulations, which have implications for future climate. Can applying mathematics to the research help? Dr. Emily Shuckburgh of the British Antarctic Survey, speaking at the 2012 SIAM Annual Meeting, thinks the answer is an emphatic “yes.”

Dr. Shuckburgh described mathematical ideas from dynamical systems used by her group, along with numerical modeling and experimental observations, to analyze circulation in the Southern Ocean.

The Southern Ocean is unique in that it connects three major ocean basins—the Pacific, the Atlantic and the Indian oceans—with a powerful current that circulates all the way around Antarctica. This circumpolar current travels from the North Atlantic, sinking down to the bottom of the ocean and coming up to the surface around Antarctica, thus connecting the deep ocean with the atmosphere above. When water from the deep ocean comes up to the surface, it can exchange heat and carbon dioxide from the atmosphere, thus making it highly significant for climate change.

Shuckburgh and her team study circulation at Drake Passage, which separates South America from the Antarctic Peninsula, at the point where water in the Southern Ocean passes from the Pacific to the Atlantic oceans. Because of the differing properties of water from different regions—salty water from the Northern Atlantic and the extremely cold waters of Antarctic ice—this region is perfectly suited to study how water with different properties mixes together during circulation. Moreover, as water moves through Drake Passage, flowing over rock-bottom mountainous topography and then churning upward, it creates a great deal of mixing. Mixing is a key determinant in the uptake of heat and carbon by oceans.

Shuckburgh’s team quantifies the amount of mixing by taking measurements of ocean properties and currents from the surface of the water down to the bottom of the ocean. In addition, dyes and tracers are tracked as they flow through Drake Passage in order to observe how mixing occurs. Diffusion of the tracer is a good qualitative indicator of transport and mixing properties, and can give an indication of how absorbed heat may be redistributed in the water.

Ocean mixing is currently not well simulated by climate models, even though it plays a major role in ocean heat uptake. Oceans are capable of absorbing, storing and releasing large quantities of heat. As greenhouse gases trap heat from the sun, oceans absorb more heat, leading to increased sea surface temperatures, rising sea levels, and consequently, changing climate patterns around the world. In addition, oceans can diffuse the effects of changes in temperature over great distances due to mixing and movement, and potential alteration of ocean currents, which can result in a greater ability to absorb heat. Studying processes such as ocean mixing is thus essential to understanding the oceans’ influence on future climate.

About SIAM

The Society for Industrial and Applied Mathematics (SIAM), headquartered in Philadelphia, Pennsylvania, is an international society of over 14,000 individual members, including applied and computational mathematicians and computer scientists, as well as other scientists and engineers. Members from 85 countries are researchers, educators, students, and practitioners in industry, government, laboratories, and academia. The Society, which also includes nearly 500 academic and corporate institutional members, serves and advances the disciplines of applied mathematics and computational science by publishing a variety of books and prestigious peer-reviewed research journals, by conducting conferences, and by hosting activity groups in various areas of mathematics. SIAM provides many opportunities for students including regional sections and student chapters.

Karthika Muthukumaraswamy | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>