Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lost water of the Napa Valley vineyards

18.12.2009
Stanford researchers on how irrigation water slips away and how to stanch the flow

Getting the most out of every drop of water is a high priority for grape growers in the southern Napa Valley, where summers are hot and dry and vines have to be irrigated to make it through the growing season. But Stanford researchers have found that a significant portion of the water applied to the vines zips right by the plants, hardly even pausing.

"We found that about 10 percent of the water that is applied is lost below the vine rooting zone and does not have contact with the soil and vine roots," said Eve Hinckley, who worked on the project for her PhD thesis in the department of geological and environmental sciences at Stanford. "This is a conservative estimate."

The problem lies in deep cracks that are a chronic feature in the clay-rich soils of the areaDue to the physical and chemical properties of these soils, they naturally swell when wet and shrink as they dry, producing cracks. Hinckley says that tendency is exacerbated by the weekly cycle of irrigating during the growing season, when vines are typically watered for 4 hours a week. Under a regular regimen of swelling and shrinking, the cracks become more pronounced and water speeds through them without interacting with the soil.

Hinckley is presenting her results at the fall meeting of the American Geophysical Union on Wednesday, Dec. 16.

She gathered her data by burying devices called lysimeters about 16 inches down in the soil – just below the root zone of the vines. That is also the depth to which many of the deep cracks penetrate in the vineyard where she did her study. The lysimeters captured water flowing through the soil, giving her data on the volume, chemical composition, and residence time of water in the soil.

The speedy passage of so much water through the cracks in the soil affects more than just the job of getting enough water to the vines. There are significant consequences on either end of that rapid flow. Upstream, it means that more water has to be stockpiled each winter than the vines are actually using.

All the water needed to sustain the vines through the summer has to be captured for each vineyard by the grower during the preceding winter. Most of that water is diverted from rivers and streams that are temporarily swollen – in a good year – by the winter rains. A lesser portion comes from rain falling directly into the reservoirs and runoff from adjacent slopes.

"You will often see a string of reservoirs coming off of a stream," Hinckley said. "The lowest one has the first water rights. When it's full, the grower closes it off and then the next grower up the slope is allowed to fill." In a winter with low rainfall, sometimes the higher reservoirs in the string never fill completely.

"Diversions are a pretty big deal up in the (river) system," Hinckley said. "And that is what has been a concern to the public, because it is siphoning water from the supply that would be going to groundwater recharge or to streams, where fish may be spawning." Chinook salmon and steelhead trout both spawn in the Napa River and its tributaries.

Hinckley said growers can take several approaches to reducing their water loss. Most vineyards have irrigation drip lines about a foot to 18 inches above the ground surface. Lowering those lines onto the ground – or even burying them – would reduce the speed and force with which irrigation water hits the ground, slowing its pace through the soil. But lowered or buried the lines are at risk of breakage during tilling operations and buried lines can get plugged.

Another possibility is slowing the rate at which water is delivered from the drip emitter, Hinckley said. "They could irrigate earlier in the day when evaporation rates are lower, and could irrigate for a bit longer, but still deliver less water to the vine and there would be more time for the water to soak into the soil."

Hinckley said some growers have systems that send small pipes down into the root zone of each vine, putting water directly where it is needed. "That is very labor intensive," she said, which makes it expensive to install. "But we are living in a world where water is a precious resource, so many growers are taking those measures."

Slower delivery could also help mitigate the problem of animal burrows, mainly ground squirrels, which are usually just below and parallel to the ground surface. Like the cracks, burrows offer water an easier path than slowly percolating through the soil and thus contribute to routing water away from the vines. Hinckley's lysimeters did not intercept water flowing through these burrows, which is one reason why she says the 10 percent estimate of water loss is a minimum. She said she's been out in the vineyards during big rainstorms and seen the burrow's effect.

"It basically looks like an artesian well," she said. "Water is flowing up, just spurting out from the subsurface."

The winter storms also revealed another cause for concern.

To determine the residency time of irrigation water in the soil, Hinckley analyzed the sulfur in the irrigation water she captured. Growers typically apply sulfur to their vines weekly throughout the growing season to combat mildew. The form of sulfur they use is chemically distinguishable from the sulfur found in the soil naturally, so by determining the quantity and type of sulfur in the water, she could tell whether the water had lingered in the soil long enough to react with it.

In addition to enabling her to calculate that at least 10 percent of the irrigation water was zipping past the root zone without reacting, she discovered that during the winter rainstorms, all the sulfur applied to the vines during the previous growing season was getting washed below the rooting zone of the vines, and potentially out of the vineyard. That could have significant consequences for areas downstream, she said.

"The growers absolutely bathe the landscape in sulfur," Hinckley said. "They are broadcast spraying it across the whole vineyard."

"The next stage of work is to look at what the implications of that sulfur input are for aquatic systems downgradient of the vineyards," she said. "There, sulfur may interact with other elements, such as heavy metals, which could have ecological consequences."

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>